Last updated: 2021-09-24
Checks: 7 0
Knit directory: femNATCD_MethSeq/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210128)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 56bb68f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.Rhistory
Ignored: code/.Rhistory
Ignored: data/Epicounts.csv
Ignored: data/Epimeta.csv
Ignored: data/Epitpm.csv
Ignored: data/KangUnivers.txt
Ignored: data/Kang_DataPreprocessing.RData
Ignored: data/Kang_dataset_genesMod_version2.txt
Ignored: data/PatMeta.csv
Ignored: data/ProcessedData.RData
Ignored: data/RTrawdata/
Ignored: data/SNPCommonFilt.csv
Ignored: data/femNAT_PC20.txt
Ignored: output/BrainMod_Enrichemnt.pdf
Ignored: output/Brain_Module_Heatmap.pdf
Ignored: output/DMR_Results.csv
Ignored: output/GOres.xlsx
Ignored: output/LME_GOplot.pdf
Ignored: output/LME_Results.csv
Ignored: output/LME_Results_Sig.csv
Ignored: output/LME_tophit.svg
Ignored: output/ProcessedData.RData
Ignored: output/RNAvsMETplots.pdf
Ignored: output/Regions_GOplot.pdf
Ignored: output/ResultsgroupComp.txt
Ignored: output/SEM_summary_groupEpi_M15.txt
Ignored: output/SEM_summary_groupEpi_M2.txt
Ignored: output/SEM_summary_groupEpi_M_all.txt
Ignored: output/SEM_summary_groupEpi_TopHit.txt
Ignored: output/SEM_summary_groupEpi_all.txt
Ignored: output/SEMplot_Epi_M15.html
Ignored: output/SEMplot_Epi_M15.png
Ignored: output/SEMplot_Epi_M15_files/
Ignored: output/SEMplot_Epi_M2.html
Ignored: output/SEMplot_Epi_M2.png
Ignored: output/SEMplot_Epi_M2_files/
Ignored: output/SEMplot_Epi_M_all.html
Ignored: output/SEMplot_Epi_M_all.png
Ignored: output/SEMplot_Epi_M_all_files/
Ignored: output/SEMplot_Epi_TopHit.html
Ignored: output/SEMplot_Epi_TopHit.png
Ignored: output/SEMplot_Epi_TopHit_files/
Ignored: output/SEMplot_Epi_all.html
Ignored: output/SEMplot_Epi_all.png
Ignored: output/SEMplot_Epi_all_files/
Ignored: output/barplots.pdf
Ignored: output/circos_DMR_tags.svg
Ignored: output/circos_LME_tags.svg
Ignored: output/clinFact.RData
Ignored: output/dds_filt_analyzed.RData
Ignored: output/designh0.RData
Ignored: output/designh1.RData
Ignored: output/envFact.RData
Ignored: output/functional_Enrichemnt.pdf
Ignored: output/gostres.pdf
Ignored: output/modelFact.RData
Ignored: output/resdmr.RData
Ignored: output/resultsdmr_table.RData
Ignored: output/table1_filtered.Rmd
Ignored: output/table1_filtered.docx
Ignored: output/table1_unfiltered.Rmd
Ignored: output/table1_unfiltered.docx
Ignored: setup_built.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02_2_Main_DMR.Rmd
) and HTML (docs/02_2_Main_DMR.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 43333cc | achiocch | 2021-09-24 | adds new build |
html | b497cc9 | achiocch | 2021-09-17 | Build site. |
html | ccbc9e4 | achiocch | 2021-08-10 | Build site. |
html | 70cd649 | achiocch | 2021-08-06 | Build site. |
html | 2a53a87 | achiocch | 2021-08-06 | Build site. |
Rmd | e4425b8 | achiocch | 2021-08-06 | wflow_publish(c(“analysis/", "code/”, "docs/*")) |
html | e3a9ae3 | achiocch | 2021-08-04 | Build site. |
html | f6bbdc0 | achiocch | 2021-08-04 | Build site. |
html | 710904a | achiocch | 2021-08-03 | Build site. |
Rmd | 16112c3 | achiocch | 2021-08-03 | wflow_publish(c(“analysis/", "code/”, “docs/”)) |
html | 16112c3 | achiocch | 2021-08-03 | wflow_publish(c(“analysis/", "code/”, “docs/”)) |
html | cde8384 | achiocch | 2021-08-03 | Build site. |
html | d761be4 | achiocch | 2021-07-31 | Build site. |
html | b452d2f | achiocch | 2021-07-30 | wflow_publish(c(“analysis/", "code/”, "docs/*")) |
html | 2734c4e | achiocch | 2021-05-08 | Build site. |
html | a847823 | achiocch | 2021-05-08 | wflow_publish(c(“analysis/", "code/”, "docs/*")) |
html | 9cc52f7 | achiocch | 2021-05-08 | Build site. |
html | 158d0b4 | achiocch | 2021-05-08 | wflow_publish(c(“analysis/", "code/”, "docs/*")) |
html | 0f262d1 | achiocch | 2021-05-07 | Build site. |
html | 5167b90 | achiocch | 2021-05-07 | wflow_publish(c(“analysis/", "code/”, "docs/*")) |
html | b5b9b9f | achiocch | 2021-05-07 | maual commit |
html | 05aac7f | achiocch | 2021-04-23 | Build site. |
html | f5c5265 | achiocch | 2021-04-19 | Build site. |
html | 17f1eec | achiocch | 2021-04-10 | Build site. |
html | 91de221 | achiocch | 2021-04-05 | Build site. |
html | 4ea1bba | achiocch | 2021-02-25 | Build site. |
Rmd | 6c21638 | achiocch | 2021-02-25 | wflow_publish(c(“analysis/", "code/”, "docs/*"), update = F) |
html | 6c21638 | achiocch | 2021-02-25 | wflow_publish(c(“analysis/", "code/”, "docs/*"), update = F) |
## load Data ####
load(paste0(Home,"/output/dds_filt_analyzed.RData"))
ranges=as.data.frame(rowRanges(dds_filt))
log_cpm = log2(counts(dds_filt, normalized=T)+1)
BootN = 250
GapSize = 500
if (reanalyze){
cl <- clusterMaker(ranges$seqnames, ranges$start, maxGap = GapSize)
tab=table(cl)
designmatrix = model.matrix(design(dds_filt), colData(dds_filt))
resdmr = bumphunter(log_cpm,
design=designmatrix,
pos=ranges$start,
chr=ranges$seqnames,
coef=ncol(designmatrix), cluster=cl, cutoff=0.5, nullMethod = "bootstrap", B=BootN)
bumphunter:::foreachCleanup()
save(resdmr, file=paste0(Home,"/output/resdmr.RData"))
} else {
if(file.exists(paste0(Home,"/output/resdmr.RData"))){
load(paste0(Home,"/output/resdmr.RData"))
} else {
cl <- clusterMaker(ranges$seqnames, ranges$start, maxGap = GapSize)
tab=table(cl)
designmatrix = model.matrix(design(dds_filt), colData(dds_filt))
resdmr = bumphunter(log_cpm,
design=designmatrix,
pos=ranges$start,
chr=ranges$seqnames,
coef=ncol(designmatrix), cluster=cl, cutoff=0.5, nullMethod = "bootstrap", B=BootN)
}
}
subject = annotateTranscripts(txdb = TxDb.Hsapiens.UCSC.hg19.knownGene,
by="gene")
No annotationPackage supplied. Trying org.Hs.eg.db.
Lade nötiges Paket: org.Hs.eg.db
Getting TSS and TSE.
403 genes were dropped because they have exons located on both strands
of the same reference sequence or on more than one reference sequence,
so cannot be represented by a single genomic range.
Use 'single.strand.genes.only=FALSE' to get all the genes in a
GRangesList object, or use suppressMessages() to suppress this message.
Getting CSS and CSE.
Getting exons.
Annotating genes.
resultsdmr_table = resdmr$table
subject = subject[subject@seqnames %in% unique(resultsdmr_table$chr),]
chck = matchGenes(resultsdmr_table, subject, type ="any", promoterDist = 2000)
.................................................................................
resultsdmr_table = cbind(resultsdmr_table, chck)
display_tab_simple(head(resultsdmr_table, n=10))
chr | start | end | value | area | cluster | indexStart | indexEnd | L | clusterL | p.value | fwer | p.valueArea | fwerArea | name | annotation | description | region | distance | subregion | insideDistance | exonnumber | nexons | UTR | strand | geneL | codingL | Geneid | subjectHits | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3194 | chr3 | 24561792 | 24561792 | -1.365 | 1.365 | 16970 | 35466 | 35466 | 1 | 1 | 0.000 | 0.268 | 0.004 | 0.980 | NA | NA | close to 3’ | close to 3’ | 1134 | NA | NA | NA | 1 | NA |
|
73 | NA | 100616448 | 1791 |
6414 | chr16 | 87636490 | 87636843 | -0.647 | 1.941 | 75725 | 158341 | 158343 | 3 | 10 | 0.000 | 0.420 | 0.000 | 0.464 | JPH3 | NM_001271604 NM_001271605 NM_020655 NP_001258533 NP_001258534 NP_065706 NR_073379 | overlaps exon upstream | inside | 1049 | overlaps exon upstream | 0 | 2 | 7 | overlaps 5’ UTR |
|
96320 | NA | 57338 | 15750 |
6516 | chr17 | 5403095 | 5403469 | -0.640 | 1.919 | 76781 | 160823 | 160825 | 3 | 8 | 0.000 | 0.444 | 0.000 | 0.488 | LOC728392 | NM_001162371 NP_001155843 | overlaps two exons | inside | 850 | overlaps two exons | 0 | 2 | 2 | 3’UTR |
|
1572 | NA | 728392 | 18663 |
5076 | chr10 | 135088739 | 135088739 | -1.289 | 1.289 | 52539 | 109119 | 109119 | 1 | 14 | 0.000 | 0.472 | 0.006 | 0.996 | ADAM8 | NM_001109 NM_001164489 NM_001164490 NP_001100 NP_001157961 NP_001157962 XM_011539117 XM_017015465 XM_017015466 XP_011537419 XP_016870954 XP_016870955 | inside intron | inside | 1668 | inside intron | 248 | 3 | 23 | inside transcription region |
|
14487 | NA | 101 | 2152 |
2559 | chr1 | 68151243 | 68151858 | -0.537 | 1.610 | 4738 | 10048 | 10050 | 3 | 11 | 0.000 | 0.756 | 0.001 | 0.856 | GADD45A | NM_001199741 NM_001199742 NM_001924 NP_001186670 NP_001186671 NP_001915 | covers exon(s) | inside | 383 | covers exon(s) | 0 | 1 | 4 | inside transcription region |
|
3161 | NA | 1647 | 5589 |
3396 | chr3 | 195943548 | 195943548 | -1.192 | 1.192 | 21455 | 44421 | 44421 | 1 | 5 | 0.001 | 0.808 | 0.010 | 1.000 | SLC51A | NM_152672 NP_689885 | inside exon | inside | 165 | inside exon | 0 | 1 | 8 | 5’ UTR |
|
16918 | NA | 200931 | 6115 |
5489 | chr12 | 50348045 | 50348422 | -0.778 | 1.555 | 60025 | 125369 | 125370 | 2 | 5 | 0.001 | 0.812 | 0.001 | 0.896 | AQP2 | NM_000486 NP_000477 | overlaps two exons | inside | 3521 | overlaps two exons | 0 | 2 | 4 | inside transcription region |
|
8140 | NA | 359 | 10625 |
7597 | chr21 | 34696824 | 34696854 | -0.776 | 1.552 | 93519 | 199373 | 199374 | 2 | 5 | 0.001 | 0.812 | 0.001 | 0.896 | IFNAR1 | NM_000629 NM_001384498 NM_001384499 NM_001384500 NM_001384501 NM_001384502 NM_001384503 NM_001384504 NP_000620 NP_001371427 NP_001371428 NP_001371429 NP_001371430 NP_001371431 NP_001371432 NP_001371433 XM_011529552 XP_011527854 | inside exon | inside | 90 | inside exon | 0 | 1 | 12 | 5’ UTR |
|
35394 | NA | 3454 | 10411 |
5983 | chr15 | 31652488 | 31652665 | -0.768 | 1.536 | 68659 | 143276 | 143277 | 2 | 7 | 0.001 | 0.824 | 0.001 | 0.904 | KLF13 | NM_001302461 NM_015995 NP_001289390 NP_057079 NR_033741 | inside intron | inside | 33405 | inside intron | 11547 | 2 | 2 | inside transcription region |
|
51019 | NA | 51621 | 13653 |
5730 | chr13 | 88324376 | 88324376 | -1.187 | 1.187 | 64598 | 134778 | 134778 | 1 | 10 | 0.001 | 0.828 | 0.010 | 1.000 | SLITRK5 | NM_001384609 NM_001384610 NM_015567 NP_001371538 NP_001371539 NP_056382 | promoter | promoter | 494 | NA | NA | NA | 2 | NA |
|
7000 | NA | 26050 | 8052 |
Nsig_region = sum(resultsdmr_table$fwer<=0.2)
Sighits = resultsdmr_table[resultsdmr_table$fwer<=0.2,]
save(resultsdmr_table, file=paste0(Home,"/output/resultsdmr_table.RData"))
save(resdmr, file=paste0(Home,"/output/resdmr.RData"))
res_dmr_filtered = resultsdmr_table %>% dplyr::select(-annotation)
write.csv(resultsdmr_table, file = paste0(Home,"/output/DMR_Results.csv"), row.names = T)
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)
Matrix products: default
locale:
[1] LC_COLLATE=German_Germany.1252 LC_CTYPE=German_Germany.1252
[3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C
[5] LC_TIME=German_Germany.1252
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] org.Hs.eg.db_3.12.0
[2] scales_1.1.1
[3] RCircos_1.2.1
[4] compareGroups_4.4.6
[5] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[6] GenomicFeatures_1.42.1
[7] AnnotationDbi_1.52.0
[8] bumphunter_1.32.0
[9] locfit_1.5-9.4
[10] doParallel_1.0.16
[11] iterators_1.0.13
[12] foreach_1.5.1
[13] kableExtra_1.3.1
[14] forcats_0.5.0
[15] stringr_1.4.0
[16] dplyr_1.0.2
[17] purrr_0.3.4
[18] readr_1.4.0
[19] tidyr_1.1.2
[20] tibble_3.0.4
[21] ggplot2_3.3.3
[22] tidyverse_1.3.0
[23] DESeq2_1.30.0
[24] SummarizedExperiment_1.20.0
[25] Biobase_2.50.0
[26] MatrixGenerics_1.2.0
[27] matrixStats_0.57.0
[28] GenomicRanges_1.42.0
[29] GenomeInfoDb_1.26.2
[30] IRanges_2.24.1
[31] S4Vectors_0.28.1
[32] BiocGenerics_0.36.0
[33] RColorBrewer_1.1-2
[34] knitr_1.30
[35] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] readxl_1.3.1 uuid_0.1-4 backports_1.2.0
[4] systemfonts_0.3.2 BiocFileCache_1.14.0 splines_4.0.3
[7] BiocParallel_1.24.1 digest_0.6.27 htmltools_0.5.1.1
[10] fansi_0.4.1 magrittr_2.0.1 Rsolnp_1.16
[13] memoise_2.0.0 Biostrings_2.58.0 annotate_1.68.0
[16] modelr_0.1.8 officer_0.3.16 askpass_1.1
[19] prettyunits_1.1.1 colorspace_2.0-0 blob_1.2.1
[22] rvest_0.3.6 rappdirs_0.3.1 haven_2.3.1
[25] xfun_0.20 crayon_1.3.4 RCurl_1.98-1.2
[28] jsonlite_1.7.2 genefilter_1.72.0 survival_3.2-7
[31] glue_1.4.2 gtable_0.3.0 zlibbioc_1.36.0
[34] XVector_0.30.0 webshot_0.5.2 DelayedArray_0.16.0
[37] DBI_1.1.1 rngtools_1.5 Rcpp_1.0.5
[40] viridisLite_0.3.0 xtable_1.8-4 progress_1.2.2
[43] bit_4.0.4 truncnorm_1.0-8 httr_1.4.2
[46] ellipsis_0.3.1 mice_3.12.0 pkgconfig_2.0.3
[49] XML_3.99-0.5 dbplyr_2.0.0 tidyselect_1.1.0
[52] rlang_0.4.10 later_1.1.0.1 munsell_0.5.0
[55] cellranger_1.1.0 tools_4.0.3 cachem_1.0.1
[58] cli_2.2.0 generics_0.1.0 RSQLite_2.2.2
[61] broom_0.7.3 evaluate_0.14 fastmap_1.1.0
[64] yaml_2.2.1 bit64_4.0.5 fs_1.5.0
[67] zip_2.1.1 doRNG_1.8.2 whisker_0.4
[70] xml2_1.3.2 biomaRt_2.46.2 compiler_4.0.3
[73] rstudioapi_0.13 curl_4.3 reprex_1.0.0
[76] geneplotter_1.68.0 stringi_1.5.3 HardyWeinberg_1.7.1
[79] highr_0.8 ps_1.5.0 gdtools_0.2.3
[82] lattice_0.20-41 Matrix_1.2-18 vctrs_0.3.6
[85] pillar_1.4.7 lifecycle_0.2.0 data.table_1.13.6
[88] bitops_1.0-6 flextable_0.6.2 httpuv_1.5.5
[91] rtracklayer_1.49.5 R6_2.5.0 promises_1.1.1
[94] writexl_1.3.1 codetools_0.2-18 assertthat_0.2.1
[97] chron_2.3-56 openssl_1.4.3 rprojroot_2.0.2
[100] withr_2.4.1 GenomicAlignments_1.26.0 Rsamtools_2.6.0
[103] GenomeInfoDbData_1.2.4 hms_1.0.0 grid_4.0.3
[106] rmarkdown_2.6 git2r_0.28.0 base64enc_0.1-3
[109] lubridate_1.7.9.2