Last updated: 2021-09-24

Checks: 7 0

Knit directory: femNATCD_MethSeq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210128) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 56bb68f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.Rhistory
    Ignored:    code/.Rhistory
    Ignored:    data/Epicounts.csv
    Ignored:    data/Epimeta.csv
    Ignored:    data/Epitpm.csv
    Ignored:    data/KangUnivers.txt
    Ignored:    data/Kang_DataPreprocessing.RData
    Ignored:    data/Kang_dataset_genesMod_version2.txt
    Ignored:    data/PatMeta.csv
    Ignored:    data/ProcessedData.RData
    Ignored:    data/RTrawdata/
    Ignored:    data/SNPCommonFilt.csv
    Ignored:    data/femNAT_PC20.txt
    Ignored:    output/BrainMod_Enrichemnt.pdf
    Ignored:    output/Brain_Module_Heatmap.pdf
    Ignored:    output/DMR_Results.csv
    Ignored:    output/GOres.xlsx
    Ignored:    output/LME_GOplot.pdf
    Ignored:    output/LME_Results.csv
    Ignored:    output/LME_Results_Sig.csv
    Ignored:    output/LME_tophit.svg
    Ignored:    output/ProcessedData.RData
    Ignored:    output/RNAvsMETplots.pdf
    Ignored:    output/Regions_GOplot.pdf
    Ignored:    output/ResultsgroupComp.txt
    Ignored:    output/SEM_summary_groupEpi_M15.txt
    Ignored:    output/SEM_summary_groupEpi_M2.txt
    Ignored:    output/SEM_summary_groupEpi_M_all.txt
    Ignored:    output/SEM_summary_groupEpi_TopHit.txt
    Ignored:    output/SEM_summary_groupEpi_all.txt
    Ignored:    output/SEMplot_Epi_M15.html
    Ignored:    output/SEMplot_Epi_M15.png
    Ignored:    output/SEMplot_Epi_M15_files/
    Ignored:    output/SEMplot_Epi_M2.html
    Ignored:    output/SEMplot_Epi_M2.png
    Ignored:    output/SEMplot_Epi_M2_files/
    Ignored:    output/SEMplot_Epi_M_all.html
    Ignored:    output/SEMplot_Epi_M_all.png
    Ignored:    output/SEMplot_Epi_M_all_files/
    Ignored:    output/SEMplot_Epi_TopHit.html
    Ignored:    output/SEMplot_Epi_TopHit.png
    Ignored:    output/SEMplot_Epi_TopHit_files/
    Ignored:    output/SEMplot_Epi_all.html
    Ignored:    output/SEMplot_Epi_all.png
    Ignored:    output/SEMplot_Epi_all_files/
    Ignored:    output/barplots.pdf
    Ignored:    output/circos_DMR_tags.svg
    Ignored:    output/circos_LME_tags.svg
    Ignored:    output/clinFact.RData
    Ignored:    output/dds_filt_analyzed.RData
    Ignored:    output/designh0.RData
    Ignored:    output/designh1.RData
    Ignored:    output/envFact.RData
    Ignored:    output/functional_Enrichemnt.pdf
    Ignored:    output/gostres.pdf
    Ignored:    output/modelFact.RData
    Ignored:    output/resdmr.RData
    Ignored:    output/resultsdmr_table.RData
    Ignored:    output/table1_filtered.Rmd
    Ignored:    output/table1_filtered.docx
    Ignored:    output/table1_unfiltered.Rmd
    Ignored:    output/table1_unfiltered.docx
    Ignored:    setup_built.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/03_01_Posthoc_analyses_Gene_Enrichment.Rmd) and HTML (docs/03_01_Posthoc_analyses_Gene_Enrichment.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 56bb68f achiocch 2021-09-24 wflow_publish(c(“analysis/", "code/”, "docs/*"))
Rmd 43333cc achiocch 2021-09-24 adds new build
html 43333cc achiocch 2021-09-24 adds new build
Rmd dee7132 achiocch 2021-09-17 adds new build
html dee7132 achiocch 2021-09-17 adds new build
Rmd e3b7fcf achiocch 2021-09-17 adds new build
html e3b7fcf achiocch 2021-09-17 adds new build
html b497cc9 achiocch 2021-09-17 Build site.
Rmd 2047ac2 achiocch 2021-09-17 wflow_publish(c(“analysis/", "code/”, "docs/*"))
Rmd fd80c2d achiocch 2021-09-16 adds SEM improvments
html fd80c2d achiocch 2021-09-16 adds SEM improvments
html ccbc9e4 achiocch 2021-08-10 Build site.
Rmd 723a1aa achiocch 2021-08-09 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 70cd649 achiocch 2021-08-06 Build site.
Rmd 611ca24 achiocch 2021-08-06 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 2a53a87 achiocch 2021-08-06 Build site.
Rmd e4425b8 achiocch 2021-08-06 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html e3a9ae3 achiocch 2021-08-04 Build site.
Rmd 3979990 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html f6bbdc0 achiocch 2021-08-04 Build site.
Rmd 1a30b73 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 1a30b73 achiocch 2021-08-04 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 710904a achiocch 2021-08-03 Build site.
Rmd 16112c3 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, “docs/”))
html 16112c3 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, “docs/”))
html cde8384 achiocch 2021-08-03 Build site.
Rmd d3629d5 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html d3629d5 achiocch 2021-08-03 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html d761be4 achiocch 2021-07-31 Build site.
Rmd b452d2f achiocch 2021-07-30 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html b452d2f achiocch 2021-07-30 wflow_publish(c(“analysis/", "code/”, "docs/*"))
Rmd 1a9f36f achiocch 2021-07-30 reviewed analysis
html 2734c4e achiocch 2021-05-08 Build site.
html a847823 achiocch 2021-05-08 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 9cc52f7 achiocch 2021-05-08 Build site.
html 158d0b4 achiocch 2021-05-08 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 0f262d1 achiocch 2021-05-07 Build site.
html 5167b90 achiocch 2021-05-07 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 05aac7f achiocch 2021-04-23 Build site.
Rmd 5f070a5 achiocch 2021-04-23 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html f5c5265 achiocch 2021-04-19 Build site.
Rmd dc9e069 achiocch 2021-04-19 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html dc9e069 achiocch 2021-04-19 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 17f1eec achiocch 2021-04-10 Build site.
Rmd 4dee231 achiocch 2021-04-10 wflow_publish(c(“analysis/", "code/”, "docs/*"))
html 91de221 achiocch 2021-04-05 Build site.
Rmd b6c6b33 achiocch 2021-04-05 updated GO function, and model def
html 4ea1bba achiocch 2021-02-25 Build site.
Rmd 6c21638 achiocch 2021-02-25 wflow_publish(c(“analysis/", "code/”, "docs/*"), update = F)
html 6c21638 achiocch 2021-02-25 wflow_publish(c(“analysis/", "code/”, "docs/*"), update = F)

Home = getwd()

Sensitivity Analyses

Sensitivity EWAS

including SES

collector=data.frame(originalP=results_Deseq$pvalue,
                     originall2FC=results_Deseq$log2FoldChange)

rownames(collector)=paste0("Epi", 1:nrow(collector))

parm="EduPar"

workingcopy = dds_filt
workingcopy=workingcopy[,as.vector(!is.na(colData(dds_filt)[parm]))]
modelpar=as.character(design(dds_filt))[2]
tmpmod=gsub("0", paste0("~ 0 +",parm), modelpar)
tmpmod=gsub("int_dis \\+", "", tmpmod)

modelpar=as.formula(tmpmod)
design(workingcopy) = modelpar

workingcopy = DESeq(workingcopy)
using pre-existing size factors
estimating dispersions
found already estimated dispersions, replacing these
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
parmres=results(workingcopy)

collector[,paste0(parm,"P")] = parmres$pvalue
collector[,paste0(parm,"l2FC")] = parmres$log2FoldChange

idx=collector$originalP<=thresholdp
idx=collector[,paste0(parm,"P")]<=thresholdp

table(collector$originalP<=thresholdp, collector[paste0(parm,"P")]<=thresholdp) %>% fisher.test()

    Fisher's Exact Test for Count Data

data:  .
p-value < 2.2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 47.31585 57.91749
sample estimates:
odds ratio 
  52.34226 
cor.test(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx],
         method = "spearman")

    Spearman's rank correlation rho

data:  collector$originall2FC[idx] and collector[, paste0(parm, "l2FC")][idx]
S = 199820136, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho 
0.9275243 
qqplot(y=-log10(collector[,paste0(parm,"P")]), 
       x = -log(runif(nrow(collector))), xlim=c(0,12),ylim=c(0,12),
       col="gray", ylab="", xlab="")
par(new=T)
qqplot(y=-log10(collector$originalP), 
       x = -log(runif(nrow(collector))),xlim=c(0,12),ylim=c(0,12),
       xlab="expected",ylab="observed")
abline(0,1,col="red")
legend("topleft", pch=1, col=c("black", "gray"), legend=c("original", parm))

plot(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx], pch=16, 
     main="log 2 foldchange", ylab=parm, xlab="original")

excluding int_dis

### excluding int_dist

modelpar=as.character(design(dds_filt))[2]
modelpar=as.formula(paste("~",gsub("int_dis +", "", modelpar)))

design(workingcopy) = modelpar

workingcopy = DESeq(workingcopy)
using pre-existing size factors
estimating dispersions
found already estimated dispersions, replacing these
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
parmres=results(workingcopy)

parm="wo.int.dis"
collector[,paste0(parm,"P")] = parmres$pvalue
collector[,paste0(parm,"l2FC")] = parmres$log2FoldChange

idx=collector$originalP<=thresholdp
idx=collector[,paste0(parm,"P")]<=thresholdp

table(collector$originalP<=thresholdp, collector[paste0(parm,"P")]<=thresholdp) %>% fisher.test()

    Fisher's Exact Test for Count Data

data:  .
p-value < 2.2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 78.91108 96.18862
sample estimates:
odds ratio 
  87.22894 
cor.test(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx],
         method = "spearman")

    Spearman's rank correlation rho

data:  collector$originall2FC[idx] and collector[, paste0(parm, "l2FC")][idx]
S = 122592852, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho 
0.9464573 
qqplot(y=-log10(collector[,paste0(parm,"P")]), 
       x = -log(runif(nrow(collector))), xlim=c(0,12),ylim=c(0,12),
       col="gray", ylab="", xlab="")
par(new=T)
qqplot(y=-log10(collector$originalP), 
       x = -log(runif(nrow(collector))),xlim=c(0,12),ylim=c(0,12),
       xlab="expected",ylab="observed")
abline(0,1,col="red")
legend("topleft", pch=1, col=c("black", "gray"), legend=c("original", parm))

plot(collector$originall2FC[idx],collector[,paste0(parm,"l2FC")][idx], pch=16,
     main="log 2 foldchange", ylab=parm, xlab="original")

Sensitivity main hit

For the most significant tag of interest (5’ of the SLITRK5 gene), we tested if the group effect is stable if correcting for Ethnicity (PC1-PC4) or CD associated environmental risk factors.

tophit=which.min(results_Deseq$padj)
methdata=log2_cpm[tophit,]
Probdat=as.data.frame(colData(dds_filt))
Probdat$topHit=methdata[rownames(Probdat)]


model0=as.character(design(dds_filt))[2]
model0=as.formula(gsub("0 +", "topHit ~ 0 + ", model0))

lmres=lm(model0, data=Probdat)
lmrescoeff = as.data.frame(coefficients(summary(lmres)))

totestpar=c("site","PC_1", "PC_2", "PC_3", "PC_4", envFact)

ressens=data.frame(matrix(nrow = length(totestpar)+1, ncol=c(3)))
colnames(ressens) = c("beta", "se", "p.value")
rownames(ressens) = c("original", totestpar)

ressens["original",] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")]

for( parm in totestpar){
  modelpar=as.character(design(dds_filt))[2]
  modelpar=as.formula(gsub("0", paste0("topHit ~ 0 +",parm), modelpar))
  lmres=lm(modelpar, data=Probdat)
  lmrescoeff = as.data.frame(coefficients(summary(lmres)))
  ressens[parm,] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")] 
}

modelpar=as.character(design(dds_filt))[2]
modelpar=as.formula(gsub("int_dis +", "", gsub("0", "topHit ~ 0", modelpar)))

lmres=lm(modelpar, data=Probdat)
lmrescoeff = as.data.frame(coefficients(summary(lmres)))
ressens["w/o_int_dis",] = lmrescoeff["groupCD", c("Estimate", "Std. Error", "Pr(>|t|)")] 


a = barplot(height = ressens$beta, 
            ylim=rev(range(c(0,ressens$beta-ressens$se)))*1.3, 
            names.arg = rownames(ressens), col=Set3, border = NA, las=3, 
            ylab="beta[se]", main="Effect sensitvity analysis")

arrows(a,ressens$beta, a, ressens$beta+ressens$se, angle = 90, length = 0.1)
arrows(a,ressens$beta, a, ressens$beta-ressens$se, angle = 90, length = 0.1)

text(a, min(ressens$beta-ressens$se)*1.15, 
     formatC(ressens$p.value), cex=0.6, srt=90)

All models are corrected for:
site, Age, Pubstat, int_dis, medication, contraceptives, cigday_1,
site is included as random effect.

original: model defined as 0 + +Age + int_dis + medication + contraceptives + cigday_1 + V8 + group

all other models represent the original model + the variable of interest

Real-time PCR validation

Data loading and parsing

RefGenes = c("GUSB")
Targets_of_Int = c("SLITRK5", "MIR4500HG")
nreplicates = 3
flagscore=Inf #replication quality error

SamplesMeta=read_xlsx(paste0(Home,"/data/RTrawdata/ZelllinienRNA_femNAT.xlsx"))
as.data.frame(SamplesMeta) -> SamplesMeta
                      
SamplesMeta$Pou=paste("POU", SamplesMeta$Pou)
rownames(SamplesMeta)=SamplesMeta$Pou

SamplesMeta$Group = dds_filt$group[match(SamplesMeta$femNATID, dds_filt$ID_femNAT)]


Files=list.files(paste0(Home,"/data/RTrawdata/"), full.names = T)

Files=Files[grepl("_data",Files)]

Sets=unique(substr(basename(Files), 1,8))

Targets_all=vector()
Samples_all=vector()


geoMean=function(x){
  x=x[!is.na(x)]
  if(length(x)==0)
    return(NA)
  else
    return((prod(x))^(1/length(x)))}

for (Set in Sets){

    Setfiles=Files[grep(Set, Files)]

    for( i in 1:length(Setfiles)){
      tmp=read.table(Setfiles[i], skip=8, header=T, sep="\t", comment.char = "", fill=T)[1:96,]
      tmp=tmp[,c("Sample.Name", "Target.Name","CÑ.")]
      colnames(tmp)=c("Sample.Name", "Target.Name", "CT")
      tmp$Target.Name=gsub("SLITRK5_L", "SLITRK5_", tmp$Target.Name)
      tmp$Target.Name=gsub("VD_", "", tmp$Target.Name)
      tmp$Target.Name=gsub("_", "", tmp$Target.Name)
      tmp$Target.Name=substr(tmp$Target.Name,1, regexpr("#", tmp$Target.Name)-1)
      tmp$CT=as.numeric(tmp$CT)
      
      # set bad replicates to NA 
      tmpmu = tapply(tmp$CT, paste0(tmp$Sample.Name,"_",tmp$Target.Name), mean, na.rm=T)
      tmpsd = tapply(tmp$CT, paste0(tmp$Sample.Name,"_",tmp$Target.Name), sd, na.rm=T)
      for (corr in which(tmpsd>flagscore)){
        index=unlist(strsplit(names(tmpmu)[corr], "_"))
        tmp[which(tmp$Sample.Name==index[1] & tmp$Target.Name==index[2]),"CT"] = NA
      }
      assign(paste0("tmp_",Set,"_",i),tmp)
    }
    
    tmp=do.call("rbind", mget(apropos(paste0("tmp_",Set))))
    tmp=tmp[which(!(tmp$Sample.Name==""|is.na(tmp$Sample.Name))), ]
    tmp=tmp[!tmp$Sample.Name=="NTC",]
    
    Samples=unique(tmp$Sample.Name)
    Targets=unique(tmp$Target.Name)
    Samples_all=unique(c(Samples_all, Samples))
    Targets_all=unique(c(Targets_all, Targets))
    
    Reform=data.frame(matrix(NA, nrow=length(Samples), ncol=length(Targets)*nreplicates))
    
    colnames(Reform)=paste0(rep(Targets, each=3), letters[1:nreplicates])
    rownames(Reform)=Samples
    
    for (i in Samples) {
      #print(i)
      for (j in Targets){
        Reform[i,grep(j, colnames(Reform))]=tmp[tmp$Sample.Name==i & tmp$Target.Name==j,"CT"]
      }
    }
    
    HK=colnames(Reform)[grep(paste0(RefGenes, collapse="|"),colnames(Reform))]
    
    GMHK=apply(Reform[,HK], 1, geoMean)
    tmp2=Reform-GMHK
    
    assign(paste0(Set,"_dCT"), tmp2)
    rm(list=c(apropos("tmp"), "Reform", "GMHK"))
    
}
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt

Warning: NAs durch Umwandlung erzeugt
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'get_java_tmp_dir' nicht gefunden
Warning in rm(list = c(apropos("tmp"), "Reform", "GMHK")): Objekt
'set_java_tmp_dir' nicht gefunden
Samples_all=unique(Samples_all)
Targets_all = unique(Targets_all)

mergedCTtable=data.frame(matrix(NA,ncol=length(Targets_all)*nreplicates, nrow=length(Samples_all)))
colnames(mergedCTtable)=paste0(rep(unique(Targets_all), each=nreplicates), letters[1:nreplicates])
rownames(mergedCTtable)=Samples_all

CTobj=apropos("_dCT")

for( obj in CTobj){
  DF=get(obj)
  for(k in colnames(DF)){
    for(l in rownames(DF)){
      mergedCTtable[l,k]=DF[l,k]
    }
  }
}

CTmeans=colMeans(mergedCTtable, na.rm = T)

meanvec=tapply(CTmeans,gsub(paste0(letters[1:nreplicates],collapse="|"),"",names(CTmeans)), mean, na.rm=T)
meanvec = rep(meanvec, each=nreplicates)
names(meanvec) = paste0(names(meanvec), letters[1:nreplicates])
meanvec=meanvec[colnames(mergedCTtable)]
ddCT=apply(mergedCTtable,1, function(x){x-meanvec}) 

FC=2^-ddCT


SamplesMeta$inset=F
SamplesMeta$inset[SamplesMeta$Pou %in% colnames(FC)]=T

SamplesMeta=SamplesMeta[SamplesMeta$inset,]

CTRLCASEsorter=c(which(SamplesMeta$Group=="CTRL"),which(SamplesMeta$Group=="CD"))
SamplesMeta = SamplesMeta[CTRLCASEsorter, ]

searcher=paste0(Targets_of_Int, collapse = "|")

FC = FC[grepl(searcher, rownames(FC)),SamplesMeta$Pou]

MuFC=apply(FC, 2, function(x){tapply(log2(x), gsub("a|b|c","",rownames(FC)), mean, na.rm=T)})
SDFC=apply(FC, 2, function(x){tapply(log2(x), gsub("a|b|c","",rownames(FC)), sd, na.rm=T)})

plot relative expression by samples

pdf(paste0(Home, "/output/barplots.pdf"))

for(i in Targets_of_Int){
  if(any(!is.na(MuFC[i,]))){
  a=barplot(unlist(MuFC[i,]), col=as.numeric(SamplesMeta[colnames(MuFC),"Group"])+1, main=i, las=3, 
            ylim=c(-max(abs(MuFC[i,])*1.2, na.rm=T), (max(abs(MuFC[i,])*1.2, na.rm=T))))
  arrows(a, MuFC[i,], a, MuFC[i,]+SDFC[i,], angle = 90, length = 0.1)
  arrows(a, MuFC[i,], a, MuFC[i,]-SDFC[i,], angle = 90, length = 0.1)
  legend("topleft", c("case", "control"), col=c(1,2), pch=15, bty="n")
  } else {
    plot(0,0, type="n", main=paste(i, "not detected"))
  }
}

dev.off()
png 
  2 
for(i in Targets_of_Int){
  if(any(!is.na(MuFC[i,]))){
  a=barplot(unlist(MuFC[i,]), col=as.numeric(SamplesMeta[colnames(MuFC),"Group"])+1, main=i, las=3, 
            ylim=c(-max(abs(MuFC[i,])*1.2, na.rm=T), (max(abs(MuFC[i,])*1.2, na.rm=T))))
  arrows(a, MuFC[i,], a, MuFC[i,]+SDFC[i,], angle = 90, length = 0.1)
  arrows(a, MuFC[i,], a, MuFC[i,]-SDFC[i,], angle = 90, length = 0.1)
  legend("topleft", c("case", "control"), col=c(1,2), pch=15, bty="n")
  } else {
    plot(0,0, type="n", main=paste(i, "not detected"))
  }
}

compare across groups

sink(paste0(Home, "/output/ResultsgroupComp.txt"))

Group=SamplesMeta$Group
for(i in Targets_of_Int){
  print(i)
  print(summary(try(lm(unlist(MuFC[i,])~Group))))
  print(t.test(unlist(MuFC[i,])~Group))
}
[1] "SLITRK5"

Call:
lm(formula = unlist(MuFC[i, ]) ~ Group)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.3710 -0.4489  0.1142  0.4382  0.9983 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -0.1703     0.1718  -0.991    0.334
GroupCD       0.5109     0.2975   1.717    0.102

Residual standard error: 0.6427 on 19 degrees of freedom
Multiple R-squared:  0.1343,    Adjusted R-squared:  0.08878 
F-statistic: 2.949 on 1 and 19 DF,  p-value: 0.1022


    Welch Two Sample t-test

data:  unlist(MuFC[i, ]) by Group
t = -2.0316, df = 18.197, p-value = 0.05706
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.03871726  0.01701686
sample estimates:
mean in group CTRL   mean in group CD 
        -0.1702834          0.3405668 

[1] "MIR4500HG"

Call:
lm(formula = unlist(MuFC[i, ]) ~ Group)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7172 -1.2116 -0.2660  0.5749  5.4474 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -0.6053     0.5683  -1.065    0.301
GroupCD       0.6614     0.9607   0.688    0.500

Residual standard error: 2.049 on 18 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared:  0.02566,   Adjusted R-squared:  -0.02847 
F-statistic: 0.474 on 1 and 18 DF,  p-value: 0.4999


    Welch Two Sample t-test

data:  unlist(MuFC[i, ]) by Group
t = -0.65047, df = 10.602, p-value = 0.5292
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.909646  1.586853
sample estimates:
mean in group CTRL   mean in group CD 
       -0.60525003         0.05614653 
sink()


SamplesMeta$femNATID2=paste0("ID_",gsub("-","_",SamplesMeta$femNATID))

SamplesMeta=SamplesMeta[SamplesMeta$Pou %in% colnames(MuFC),]
MuFC=MuFC[,SamplesMeta$Pou]

TPM4RNA=selEpitpm[,SamplesMeta$femNATID2]
colnames(TPM4RNA)=SamplesMeta$Pou

tags=list()


Targets=Targets_of_Int


sigtags=which(restab$padj<=0.05)

tagsOI=grep(paste0(Targets, collapse = "|"),selEpiMeta$gene)

sigtagsOI = tagsOI[tagsOI %in% sigtags]

fintagsOI=data.frame(tags=sigtagsOI, gene=selEpiMeta[sigtagsOI,"gene"])

#Targ=Targets[1]
#tag=tags[1]

compare against methylation level

pdf(paste0(Home,"/output/RNAvsMETplots.pdf"), width = 15, height = 8)

MuFC=as.data.frame(MuFC)
MuFCsel=MuFC[Targets,]
par(mar=c(5,5,5,3), mfrow=c(1,2))
for (Targ in Targets){
  tags=fintagsOI$tags[grep(Targ, fintagsOI$gene)]
  for (tag in tags){
    data=data.frame(tpm=unlist(TPM4RNA[tag,SamplesMeta$Pou]) , 
                    RT=unlist(MuFCsel[grep(Targ, rownames(MuFCsel)),SamplesMeta$Pou]))
    plot(data$tpm,data$RT, 
         xlab="methylation tpm", 
         ylab = "mRNA log2FC vs mean", 
         ylim=c(-3,3),
         col=4-as.numeric(SamplesMeta$Group), 
         pch=as.numeric(SamplesMeta$Group)+14,
         main=paste(tag, "Meth vs mRNA Expr", Targ))
    legend("topleft", c("control", "case"), pch=c(15,16), col=c(3,2), bty="n")
    a=lm(RT~tpm, data)
    b=summary(a)
    abline(a, col="blue")

    SperCor=cor(data$RT,data$tpm,use = "c", method = "spearman")
    mtext(3, text = paste("beta = ", round(coefficients(a)[2],2), 
                          "; se =", round(b$coefficients[2,2],2), 
                          "; pvalue = ", round(b$coefficients[2,4],3), 
                          "; sperman cor = ", round(SperCor,3)))
  }
}

dev.off()
png 
  2 
MuFC=as.data.frame(MuFC)
MuFCsel=MuFC[Targets,]
par(mar=c(5,5,5,3), mfrow=c(1,2))
for (Targ in Targets){
  tags=fintagsOI$tags[grep(Targ, fintagsOI$gene)]
  for (tag in tags){
    data=data.frame(tpm=unlist(TPM4RNA[tag,SamplesMeta$Pou]) , 
                    RT=unlist(MuFCsel[grep(Targ, rownames(MuFCsel)),SamplesMeta$Pou]))
    plot(data$tpm,data$RT, 
         xlab="methylation tpm", 
         ylab = "mRNA log2FC vs mean", 
         ylim=c(-3,3),
         col=4-as.numeric(SamplesMeta$Group), 
         pch=as.numeric(SamplesMeta$Group)+14,
         main=paste(tag, "Meth vs mRNA Expr", Targ))
    legend("topleft", c("control", "case"), pch=c(15,16), col=c(3,2), bty="n")
    a=lm(RT~tpm, data)
    b=summary(a)
    abline(a, col="blue")
    SperCor=cor(data$RT,data$tpm,use = "c", method = "spearman")
    mtext(3, text = paste("beta = ", round(coefficients(a)[2],2), 
                          "; se =", round(b$coefficients[2,2],2), 
                          "; pvalue = ", round(b$coefficients[2,4],3), 
                          "; Spearman cor = ", round(SperCor,3)))
  }
}

Systems Analysis

Genomic feature enrichment

Significant loci with a p-value <= 0.01 and a absolute log2 fold-change lager 0.5 were tested for enrichment in annotated genomic feature using fisher exact test.

Ranges=rowData(dds_filt)

TotTagsofInterest=sum(Ranges$WaldPvalue_groupCD<=thresholdp & abs(Ranges$groupCD)>thresholdLFC)

Resall=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp& abs(Ranges$groupCD)>thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resall = rbind(Resall, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resall = rbind(Resall, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resall = rbind(Resall, res)
colnames(Resall)=c("OR", "CI95L", "CI95U", "P")
rownames(Resall)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resall$Beta = log(Resall$OR)
Resall$SE = (log(Resall$OR)-log(Resall$CI95L))/1.96
Resall$Padj=p.adjust(Resall$P, method = "bonferroni")

Resdown=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp & Ranges$groupCD<thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resdown = rbind(Resdown, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resdown = rbind(Resdown, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resdown = rbind(Resdown, res)
colnames(Resdown)=c("OR", "CI95L", "CI95U", "P")
rownames(Resdown)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resdown$Beta = log(Resdown$OR)
Resdown$SE = (log(Resdown$OR)-log(Resdown$CI95L))/1.96
Resdown$Padj=p.adjust(Resdown$P, method = "bonferroni")

Resup=data.frame()
index = Ranges$WaldPvalue_groupCD<=thresholdp & Ranges$groupCD>thresholdLFC
for (feat in unique(Ranges$feature)){
  tmp=table(Ranges$feature == feat, signif=index)
  resfish=fisher.test(tmp)
  res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
  Resup = rbind(Resup, res)
}
tmp=table(Ranges$tf_binding!="", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resup = rbind(Resup, res)
tmp=table(Ranges$cpg=="cpg", signif=index)
resfish=fisher.test(tmp)
res = c(resfish$estimate, unlist(resfish$conf.int), resfish$p.value)
Resup = rbind(Resup, res)
colnames(Resup)=c("OR", "CI95L", "CI95U", "P")
rownames(Resup)=c(unique(Ranges$feature), "TF-binding", "CpG-island")
Resup$Beta = log(Resup$OR)
Resup$SE = (log(Resup$OR)-log(Resup$CI95L))/1.96
Resup$Padj=p.adjust(Resup$P, method = "bonferroni")

multiORplot(Resall, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="All diff. methylated loci")

multiORplot(Resup, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="hypomethylated loci")

multiORplot(Resdown, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="Hypermethylated loci")

pdf(paste0(Home, "/output/functional_Enrichemnt.pdf"))
multiORplot(Resall, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="All diff. methylated loci")
multiORplot(Resup, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="hypomethylated loci")
multiORplot(Resdown, Pval = "P", Padj = "Padj", beta="Beta",SE = "SE", pheno="Hypermethylated loci")
dev.off()
png 
  2 

GO-term Enrichment

Significant loci and differentially methylated regions with a p-value <= 0.01 and an absolute log2 fold-change lager 0.5 were tested for enrichment among GO-terms Molecular Function, Cellular Compartment and Biological Processes, KEGG pathways, Transcription factor Binding sites, Human Protein Atlas Tissue Expression, Human Phenotypes.

getGOresults = function(geneset, genereference){
  resgo = gost(geneset, organism = "hsapiens",
               correction_method = "g_SCS",
               domain_scope = "custom",
               sources = c("GO:BP", "GO:MF", "GO:CC"),
               custom_bg = genereference)
  if(length(resgo) != 0){
    return(resgo)
  } else {
    print("no significant results")
    return(NULL)
  }  
}

gene_univers = getuniquegenes(as.data.frame(rowRanges(dds_filt))$gene)


idx = (results_Deseq$pvalue <= thresholdp & 
         (abs(results_Deseq$log2FoldChange) > thresholdLFC))

genes_reg = getuniquegenes(as.data.frame(rowRanges(dds_filt))$gene[idx])


dmr_genes = unique(resultsdmr_table$name[resultsdmr_table$p.value<=thresholdp & 
                   abs(resultsdmr_table$value)>=thresholdLFC])


Genes_of_interset = list("01_dmregions" = dmr_genes,  
                         "02_dmtag" = genes_reg
                         )

gostres = getGOresults(Genes_of_interset, gene_univers)

gostplot(gostres, capped = TRUE, interactive = T)
p = gostplot(gostres, capped = TRUE, interactive = F)

toptab = gostres$result

pp = publish_gostplot(p, filename = paste0(Home,"/output/gostres.pdf"))
The image is saved to C:/Users/chiocchetti/Projects/femNATCD_MethSeq/output/gostres.pdf
write.xlsx2(toptab, file = paste0(Home,"/output/GOres.xlsx"), sheetName = "GO_enrichment")

Brain Developmental Processes Enrichment tests

Gene sets identified to be deferentially methylated with a p-value <= 0.01 and an absolute log2 fold-change larger 0.5 were tested for enrichment among gene-modules coregulated during Brain expression.

Kang Modules

# define Reference Universe 

KangUnivers<- read.table(paste0(Home,"/data/KangUnivers.txt"), sep="\t", header=T)
colnames(KangUnivers)<-c("EntrezId","Symbol")

Kang_genes<-read.table(paste0(Home,"/data/Kang_dataset_genesMod_version2.txt"),sep="\t",header=TRUE)

#3)Generate Gene universe to be used for single gene lists
tmp=merge(KangUnivers,Kang_genes,by.y="EntrezGene",by.x="EntrezId",all=TRUE) #18826
KangUni_Final<-tmp[duplicated(tmp$EntrezId)==FALSE,] #18675


# Local analysis gene universe
Annotation_list<-data.frame(Symbol = gene_univers)

# match modules 
Annotation_list$Module = Kang_genes$Module[match(Annotation_list$Symbol,Kang_genes$symbol)]

# check if overlapping in gene universes
Annotation_list$univers = Annotation_list$Symbol %in% KangUni_Final$Symbol

# drop duplicates 
Annotation_list = Annotation_list[duplicated(Annotation_list$Symbol)==FALSE,]

# selct only genes that have been detected on both datasets
Annotation_list = Annotation_list[Annotation_list$univers==T,] 

# final reference 
UniversalGeneset=Annotation_list$Symbol

# define Gene lists to test 
# sort and order Modules to be tested

Modules=unique(Annotation_list$Module)
Modules = Modules[! Modules %in% c(NA, "")]
Modules = Modules[order(as.numeric(gsub("M","",Modules)))]

GL_all=list()

for(i in Modules){
  GL_all[[i]]=Annotation_list$Symbol[Annotation_list$Module%in%i]
}
GL_all[["M_all"]]=Kang_genes$symbol[Kang_genes$Module %in% Modules]


GOI1 = Genes_of_interset

Resultsall=list()
for(j in names(GOI1)){
  Res = data.frame()
  for(i in names(GL_all)){
    Modulegene=GL_all[[i]]
    Factorgene=GOI1[[j]]
    Testframe<-fisher.test(table(factor(UniversalGeneset %in% Factorgene,levels=c("TRUE","FALSE")),
                                 factor(UniversalGeneset %in% Modulegene,levels=c("TRUE","FALSE"))))
    beta=log(Testframe$estimate)
    Res[i, "beta"] =beta
    Res[i, "SE"]=abs(beta-log(Testframe$conf.int[1]))/1.96
    Res[i, "Pval"]=Testframe$p.value
    Res[i, "OR"]=(Testframe$estimate)
    Res[i, "ORL"]=(Testframe$conf.int[1])
    Res[i, "ORU"]=(Testframe$conf.int[2])
  }
  Res$Padj = p.adjust(Res$Pval, method = "bonferroni")
  Resultsall[[j]] = Res
  
}
par(mfrow = c(2,1))
for (i in names(Resultsall)){ 
  multiORplot(datatoplot = Resultsall[[i]], pheno=i)
}

par(mfrow = c(1,1))
pdf(paste0(Home, "/output/BrainMod_Enrichemnt.pdf"))
for (i in names(Resultsall)){
  multiORplot(datatoplot = Resultsall[[i]], pheno=i)
}
dev.off()
png 
  2 
Modsig = c()

for(r in names(Resultsall)){
  a=rownames(Resultsall[[r]])[Resultsall[[r]]$Padj<=0.05]
  Modsig = c(Modsig,a)
}

Brain espresseion heatmaps

# show brains and expression
Modsig2=unique(Modsig[Modsig!="M_all"])

load(paste0(Home,"/data/Kang_DataPreprocessing.RData")) #Load the Kang expression data of all genes 
datExprPlot=matriz #Expression data of Kang loaded as Rdata object DataPreprocessing.RData


Genes = GL_all[names(GL_all)!="M_all"]

Genes_expression<-list()

pcatest<-list()
for (i in names(Genes)){
  Genes_expression[[i]]<-matriz[,which(colnames(matriz) %in% Genes[[i]])]
  pcatest[[i]]=prcomp(t(as.matrix(Genes_expression[[i]])),retx=TRUE)
}

# PCA test
PCA<-data.frame(pcatest[[1]]$rotation)
PCA$donor_name<-rownames(PCA)
PC1<-data.frame(PCA[,c(1,ncol(PCA))])

#Combining the age with expression data
list <- strsplit(sampleInfo$age, " ")
library("plyr")
------------------------------------------------------------------------------
You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)
------------------------------------------------------------------------------

Attache Paket: 'plyr'
The following object is masked from 'package:matrixStats':

    count
The following object is masked from 'package:IRanges':

    desc
The following object is masked from 'package:S4Vectors':

    rename
The following objects are masked from 'package:dplyr':

    arrange, count, desc, failwith, id, mutate, rename, summarise,
    summarize
The following object is masked from 'package:purrr':

    compact
df <- ldply(list)
colnames(df) <- c("Age", "time")

sampleInfo<-cbind(sampleInfo[,1:9],df)
sampleInfo$Age<-as.numeric(sampleInfo$Age)

sampleInfo$period<-ifelse(sampleInfo$time=="pcw",sampleInfo$Age*7,ifelse(sampleInfo$time=="yrs",sampleInfo$Age*365+270,ifelse(sampleInfo$time=="mos",sampleInfo$Age*30+270,NA)))

#We need it just for the donor names

PCA_matrix<-merge.with.order(PC1,sampleInfo,by.y="SampleID",by.x="donor_name",keep_order=1)

#Select which have phenotype info present 
matriz2<-matriz[which(rownames(matriz) %in% PCA_matrix$donor_name),]
FactorGenes_expression<-list()
#Factors here mean modules
for (i in names(Genes)){
  FactorGenes_expression[[i]]<-matriz2[,which(colnames(matriz2) %in% Genes[[i]])]
}


FactorseGE<-list()
for (i in names(Genes)){
  FactorseGE[[i]]<-FactorGenes_expression[[i]]
}

allModgenes=NULL
colors=vector()
for ( i in names(Genes)){
  allModgenes=cbind(allModgenes,FactorseGE[[i]])
  colors=c(colors, rep(i, ncol(FactorseGE[[i]])))
}


lengths=unlist(lapply(FactorGenes_expression, ncol), use.names = F)

MEorig=moduleEigengenes(allModgenes, colors)

PCA_matrixfreeze=PCA_matrix

index=!PCA_matrix$structure_acronym %in% c("URL", "DTH", "CGE","LGE", "MGE",  "Ocx", "PCx", "M1C-S1C","DIE", "TCx", "CB")
PCA_matrix=PCA_matrix[index,]
ME = MEorig$eigengenes[index,]
matsel = matriz2[index,]

colnames(ME) = gsub("ME", "", colnames(ME))

timepoints=seq(56,15000, length.out=1000)
matrix(c("CB", "THA", "CBC", "MD"), ncol=2 ) -> cnm


brainheatmap=function(Module){
  MEmod=ME[,Module]
  toplot=data.frame(matrix(NA, nrow=length(table(PCA_matrix$structure_acronym)), ncol=998))
  rownames(toplot)=unique(PCA_matrix$structure_acronym)
  target <- c("OFC", "DFC", "VFC", "MFC","M1C","S1C","IPC","A1C","STC","ITC","V1C","HIP","AMY","STR","MD","CBC")
  toplot<-toplot[c(6,2,8,5,11,12,10,9,7,4,14,3,1,13,16,15),]
  
  
  for ( i in unique(PCA_matrix$structure_acronym)){
    index=PCA_matrix$structure_acronym==i
    LOESS=loess(MEmod[index]~PCA_matrix$period[index])
    toplot[i,]=predict(LOESS,newdata = round(exp(seq(log(56),log(15000), length.out=998)),2))
    colnames(toplot)[c(1,77,282,392,640,803,996)]<-
      c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  }
  
  
  
  cols=viridis(100)
  labvec <- c(rep(NA, 1000))
  
  labvec[c(1,77,282,392,640,803,996)] <- c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  
  
  toplot<-toplot[,1:998]
  date<-c(1:998)
  dateY<-paste0(round(date/365,2),"_Years")
  
  names(toplot)<-dateY
  
  par(xpd=FALSE) 
  heatmap.2(as.matrix(toplot), col = cols, 
            main=Module,
            trace = "none", 
            na.color = "grey",
            Colv = F, Rowv = F,
            labCol = labvec,
            #breaks = seq(-0.1,0.1, length.out=101),
            symkey = T,
            scale = "row",
            key.title = "",
            dendrogram = "none",
            key.xlab = "eigengene",
            density.info = "none",
            #main=paste("Module",1),
            srtCol=90,
            tracecol = "none", 
            cexRow = 1,
            add.expr=eval.parent(abline(v=282),
                                 axis(1,at=c(1,77,282,392,640,803,996),
                                      labels =FALSE)),cexCol = 1)
  
 
}

brainheatmap_gene=function(Genename){
  MEmod=matsel[,Genename]
  toplot=data.frame(matrix(NA, nrow=length(table(PCA_matrix$structure_acronym)), ncol=998))
  rownames(toplot)=unique(PCA_matrix$structure_acronym)
  target <- c("OFC", "DFC", "VFC", "MFC","M1C","S1C","IPC","A1C","STC","ITC","V1C","HIP","AMY","STR","MD","CBC")
  toplot<-toplot[c(6,2,8,5,11,12,10,9,7,4,14,3,1,13,16,15),]


  for ( i in unique(PCA_matrix$structure_acronym)){
    index=PCA_matrix$structure_acronym==i
    LOESS=loess(MEmod[index]~PCA_matrix$period[index])
    toplot[i,]=predict(LOESS,newdata = round(exp(seq(log(56),log(15000), length.out=998)),2))
    colnames(toplot)[c(1,77,282,392,640,803,996)]<-
      c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")
  }



  cols=viridis(100)
  labvec <- c(rep(NA, 1000))

  labvec[c(1,77,282,392,640,803,996)] <- c("1pcw","21pcw","Birth","1.3years","5.4years","13.6years","40.7years")


  toplot<-toplot[,1:998]
  date<-c(1:998)
  dateY<-paste0(round(date/365,2),"_Years")

  names(toplot)<-dateY

  par(xpd=FALSE)
  heatmap.2(as.matrix(toplot), col = cols,
            main=Genename,
            trace = "none",
            na.color = "grey",
            Colv = F, Rowv = F,
            labCol = labvec,
            #breaks = seq(-0.1,0.1, length.out=101),
            symkey = F,
            scale = "none",
            key.title = "",
            dendrogram = "none",
            key.xlab = "eigengene",
            density.info = "none",
            #main=paste("Module",1),
            #srtCol=90,
            tracecol = "none",
            cexRow = 1,
            add.expr=eval.parent(abline(v=282),
                                 axis(1,at=c(1,77,282,392,640,803,996),
                                      labels =FALSE))
            ,cexCol = 1)
}


brainheatmap_gene("SLITRK5")

for(Module in Modsig2){
  brainheatmap(Module)
}

pdf(paste0(Home, "/output/Brain_Module_Heatmap.pdf"))

brainheatmap_gene("SLITRK5")
for(Module in Modsig2){
  brainheatmap(Module)
}
dev.off()
png 
  2 

Risk Factor Mediation Analysis

Risk factor loading and correlation plots

dropfact=c("site", "0", "group")

modelFact=strsplit(as.character(design(dds_filt))[2], " \\+ ")[[1]]


Patdata=as.data.frame(colData(dds_filt))

load(paste0(Home, "/output/envFact.RData"))

envFact=envFact[!envFact %in% dropfact] 
modelFact=modelFact[!modelFact %in% dropfact] 

EpiMarker = c()

# TopHit
Patdata$Epi_TopHit=log2_cpm[base::which.min(results_Deseq$pvalue),]

# 1PC of all diff met
tmp=glmpca(log2_cpm[base::which(results_Deseq$pvalue<=thresholdp),], 1)

Patdata$Epi_all= tmp$factors$dim1
  
EpiMarker = c(EpiMarker, "Epi_TopHit", "Epi_all")

#Brain Modules

Epitestset=GL_all[Modsig]

for(n in names(Epitestset)){
  index=gettaglistforgenelist(genelist = Epitestset[[n]], dds_filt)
  index = base::intersect(index, base::which(results_Deseq$pvalue<=thresholdp))
  # get eigenvalue
  epiname=paste0("Epi_",n)
  tmp=glmpca(log2_cpm[index,], 1)
  Patdata[,epiname]= tmp$factors$dim1
  EpiMarker = c(EpiMarker, epiname)
}

cormat = cor(apply(Patdata[,c("group", envFact, modelFact, EpiMarker)] %>% mutate_all(as.numeric), 2, minmax_scaling),
             use = "pairwise.complete.obs")

par(mfrow=c(1,2))
corrplot(cormat, main="correlations")
corrplot(cormat, order = "hclust", main="correlations ordered")

SEM analysis

fullmodEnv=paste(unique(envFact,modelFact), sep = "+", collapse = "+")

Dataset = Patdata[,c("group", envFact, modelFact,EpiMarker)]

model = "
Epi~0+a*Matsmk+b*Matagg+c*FamScore+d*EduPar+e*n_trauma+Age+int_dis+medication+contraceptives+cigday_1+V8

group~f*Matsmk+g*Matagg+h*FamScore+i*EduPar+j*n_trauma+Age+int_dis+medication+contraceptives+cigday_1+V8+z*Epi

#direct
directMatsmk := f
directMatagg := g
directFamScore := h
directEduPar := i
directn_trauma := j

#indirect
EpiMatsmk := a*z
EpiMatagg := b*z
EpiFamScore := c*z
EpiEduPar := d*z
Epin_trauma := e*z

total := f + g + h + i + j + (a*z)+(b*z)+(c*z)+(d*z)+(e*z)

"

Netlist = list()


nothing = function(x){return(x)}

for (marker in EpiMarker) {
  
  Dataset$Epi = Dataset[,marker]
  Datasetscaled = Dataset %>% mutate_if(is.numeric, minmax_scaling)
  Datasetscaled = Datasetscaled %>% mutate_if(is.factor,ordered)

  fit<-lavaan(model,data=Datasetscaled, estimator="DWLS")
  
  sink(paste0(Home,"/output/SEM_summary_group",marker,".txt"))
  summary(fit)
  print(fitMeasures(fit))
  print(parameterEstimates(fit))
  sink()
  
  cat("############################\n")
  cat("############################\n")
  cat(marker, "\n")
  cat("############################\n")
  cat("############################\n")
  
  cat("##Mediation Model ##\n")
  summary(fit)
  cat("\n")
  #print(fitMeasures(fit))
  cat("\n")
  #print(parameterEstimates(fit))
  cat("\n")
  
  #SOURCE FOR PLOT https://stackoverflow.com/questions/51270032/how-can-i-display-only-significant-path-lines-on-a-path-diagram-r-lavaan-sem
  restab=lavaan::parameterEstimates(fit) %>% dplyr::filter(!is.na(pvalue)) %>% 
    arrange(desc(pvalue)) %>% mutate_if("is.numeric","round",3) %>% 
    dplyr::select(-ci.lower,-ci.upper,-z)
  
  pvalue_cutoff <- 0.05
  
  obj <- semPlot:::semPlotModel(fit)
  original_Pars <- obj@Pars
  
  
  print(original_Pars)
  
  
  check_Pars <- obj@Pars %>% dplyr:::filter(!(edge %in% c("int","<->") | lhs == rhs)) # this is the list of parameter to sift thru
  keep_Pars <- obj@Pars %>% dplyr:::filter(edge %in% c("int","<->") | lhs == rhs) # this is the list of parameter to keep asis
  
  test_against <- lavaan::parameterEstimates(fit) %>% dplyr::filter(pvalue < pvalue_cutoff, rhs != lhs)
  
  # for some reason, the rhs and lhs are reversed in the standardizedSolution() output, for some of the values
  # I'll have to reverse it myself, and test against both orders
  
  test_against_rev <- test_against %>% dplyr::rename(rhs2 = lhs, lhs = rhs) %>% dplyr::rename(rhs = rhs2)
  
  checked_Pars <-
    check_Pars %>% semi_join(test_against, by = c("lhs", "rhs")) %>% bind_rows(
      check_Pars %>% semi_join(test_against_rev, by = c("lhs", "rhs"))
    )
  
  obj@Pars <- keep_Pars %>% bind_rows(checked_Pars) %>% 
    mutate_if("is.numeric","round",3) %>% 
    mutate_at(c("lhs","rhs"),~gsub("Epi", marker,.))
  
  obj@Vars = obj@Vars %>% mutate_at(c("name"),~gsub("Epi", marker,.))
  
  DF = obj@Pars
  DF = DF[DF$lhs!=DF$rhs,]
  DF = DF[abs(DF$est)>0.1,]
  
  DF = DF[DF$edge == "~>",] # only include directly modelled effects in figure 
  
  nodes <- data.frame(id=obj@Vars$name, label = obj@Vars$name)
  nodes$color<-Dark8[8]
  nodes$color[nodes$label == "group"] = Dark8[3]
  nodes$color[nodes$label == marker] = Dark8[4]
  nodes$color[nodes$label %in% envFact] = Dark8[5]
  
  if(nrow(DF)>0){
  edges <- data.frame(from = DF$lhs, 
                      to = DF$rhs, 
                      width=abs(DF$est), 
                      arrows ="to")
  
  edges$dashes = F
  edges$label =  DF$est
  edges$color=c("firebrick", "forestgreen")[1:2][factor(sign(DF$est), levels=c(-1,0,1),labels=c(1,2,2))]
  edges$width=2
  }
  else {edges = data.frame(from=NULL, to = NULL)}
  
  cexlab = 18
  plotnet<- visNetwork(nodes, edges,  
                       main=list(text=marker,
                                 style="font-family:arial;font-size:20px;text-align:center"),
                       submain=list(text="significant paths", 
                                    style="font-family:arial;text-align:center")) %>% 
    visEdges(arrows =list(to = list(enabled = TRUE, scaleFactor = 0.7)),
                       font=list(size=cexlab, style="font-family:arial;text-align:center")) %>%
    visNodes(font=list(size=cexlab, style="font-family:arial;text-align:center")) %>%
    
    visPhysics(enabled = T, solver = "forceAtlas2Based")
  
  
  Netlist[[marker]] = plotnet
  htmlfile = paste0(Home,"/output/SEMplot_",marker,".html")
  visSave(plotnet, htmlfile)
  webshot(paste0(Home,"/output/SEMplot_",marker,".html"), zoom = 1, 
          file = paste0(Home,"/output/SEMplot_",marker,".png"))
  
}
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives
Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
lavaan WARNING: correlation between variables group and Epi is (nearly) 1.0
Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
variances are negative
############################
############################
Epi_TopHit 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 108 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         23
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                                      
  Test statistic                               152.293
  Degrees of freedom                                 3
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)   -0.033    0.050   -0.657    0.511
    Matagg     (b)   -0.014    0.072   -0.202    0.840
    FamScore   (c)    0.056    0.076    0.739    0.460
    EduPar     (d)   -0.038    0.108   -0.358    0.721
    n_trauma   (e)    0.085    0.111    0.767    0.443
    Age              -0.090    0.097   -0.929    0.353
    int_dis          -0.074    0.057   -1.310    0.190
    medication       -0.044    0.059   -0.759    0.448
    contrcptvs       -0.017    0.049   -0.341    0.733
    cigday_1         -0.111    0.136   -0.815    0.415
    V8               -0.089    0.568   -0.156    0.876
  group ~                                             
    Matsmk     (f)    0.194    1.160    0.167    0.867
    Matagg     (g)    1.502    2.502    0.600    0.548
    FamScore   (h)    0.182    2.108    0.086    0.931
    EduPar     (i)   -3.511    2.254   -1.558    0.119
    n_trauma   (j)    2.563    1.452    1.766    0.077
    Age              -3.056    2.522   -1.211    0.226
    int_dis           1.143    0.829    1.379    0.168
    medication        1.079    0.873    1.235    0.217
    contrcptvs        0.108    0.803    0.135    0.893
    cigday_1         10.186    7.209    1.413    0.158
    V8               13.100   16.931    0.774    0.439
    Epi        (z)   -1.921    0.014 -133.612    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125                           

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               1.000                           
   .group            -2.692                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.194    1.160    0.167    0.867
    directMatagg      1.502    2.502    0.600    0.548
    directFamScore    0.182    2.108    0.086    0.931
    directEduPar     -3.511    2.254   -1.558    0.119
    directn_trauma    2.563    1.452    1.766    0.077
    EpiMatsmk         0.063    0.095    0.657    0.511
    EpiMatagg         0.028    0.138    0.202    0.840
    EpiFamScore      -0.108    0.147   -0.739    0.460
    EpiEduPar         0.074    0.207    0.358    0.721
    Epin_trauma      -0.163    0.213   -0.766    0.443
    total             0.823    4.371    0.188    0.851

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi -3.256589e-02 -0.0143904486      
3       b         Matagg   ~>            Epi -1.446988e-02 -0.0043596534      
4       c       FamScore   ~>            Epi  5.638498e-02  0.0204664407      
5       d         EduPar   ~>            Epi -3.844427e-02 -0.0088987514      
6       e       n_trauma   ~>            Epi  8.486733e-02  0.0191918495      
7                    Age   ~>            Epi -9.011774e-02 -0.0195992540      
8                int_dis   ~>            Epi -7.447596e-02 -0.0342761092      
9             medication   ~>            Epi -4.445645e-02 -0.0169647132      
10        contraceptives   ~>            Epi -1.677936e-02 -0.0077223731      
11              cigday_1   ~>            Epi -1.109172e-01 -0.0274559411      
12                    V8   ~>            Epi -8.888122e-02 -0.0060402510      
13      f         Matsmk   ~>          group  1.936833e-01  0.0213188597      
14      g         Matagg   ~>          group  1.502114e+00  0.1127328109      
15      h       FamScore   ~>          group  1.819577e-01  0.0164516644      
16      i         EduPar   ~>          group -3.511101e+00 -0.2024423080      
17      j       n_trauma   ~>          group  2.563273e+00  0.1443881569      
18                   Age   ~>          group -3.055589e+00 -0.1655330451      
19               int_dis   ~>          group  1.143258e+00  0.1310630086      
20            medication   ~>          group  1.078602e+00  0.1025259011      
21        contraceptives   ~>          group  1.080677e-01  0.0123888743      
22              cigday_1   ~>          group  1.018628e+01  0.6280782404      
23                    V8   ~>          group  1.310041e+01  0.2217637315      
24      z            Epi   ~>          group -1.921485e+00 -0.4786273427      
26                   Epi  <->            Epi  1.000000e+00  0.9960212963      
27                 group  <->          group -2.692105e+00 -0.1663725191      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives
Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
lavaan WARNING: correlation between variables group and Epi is (nearly) 1.0
Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
variances are negative
############################
############################
Epi_all 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 114 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         23
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                                      
  Test statistic                                26.894
  Degrees of freedom                                 3
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.014    0.025    0.573    0.567
    Matagg     (b)    0.023    0.038    0.590    0.555
    FamScore   (c)   -0.037    0.042   -0.871    0.384
    EduPar     (d)   -0.090    0.060   -1.514    0.130
    n_trauma   (e)    0.025    0.048    0.523    0.601
    Age               0.034    0.064    0.534    0.593
    int_dis           0.023    0.024    0.934    0.350
    medication        0.007    0.030    0.248    0.804
    contrcptvs       -0.016    0.027   -0.583    0.560
    cigday_1          0.022    0.052    0.425    0.671
    V8                0.060    0.306    0.197    0.844
  group ~                                             
    Matsmk     (f)    0.236    1.156    0.204    0.838
    Matagg     (g)    1.498    2.499    0.600    0.549
    FamScore   (h)    0.125    2.104    0.059    0.953
    EduPar     (i)   -3.311    2.246   -1.474    0.140
    n_trauma   (j)    2.365    1.437    1.645    0.100
    Age              -2.930    2.517   -1.164    0.244
    int_dis           1.254    0.822    1.525    0.127
    medication        1.154    0.867    1.331    0.183
    contrcptvs        0.162    0.798    0.203    0.839
    cigday_1         10.369    7.205    1.439    0.150
    V8               13.187   16.901    0.780    0.435
    Epi        (z)    1.393    0.134   10.435    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125                           

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               1.000                           
   .group            -0.942                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.236    1.156    0.204    0.838
    directMatagg      1.498    2.499    0.600    0.549
    directFamScore    0.125    2.104    0.059    0.953
    directEduPar     -3.311    2.246   -1.474    0.140
    directn_trauma    2.365    1.437    1.645    0.100
    EpiMatsmk         0.020    0.035    0.572    0.567
    EpiMatagg         0.032    0.054    0.590    0.556
    EpiFamScore      -0.051    0.059   -0.868    0.385
    EpiEduPar        -0.126    0.084   -1.499    0.134
    Epin_trauma       0.035    0.067    0.522    0.602
    total             0.823    4.371    0.188    0.851

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi  1.438673e-02  0.0063670252      
3       b         Matagg   ~>            Epi  2.267876e-02  0.0068433600      
4       c       FamScore   ~>            Epi -3.652791e-02 -0.0132790452      
5       d         EduPar   ~>            Epi -9.048835e-02 -0.0209774780      
6       e       n_trauma   ~>            Epi  2.508125e-02  0.0056805267      
7                    Age   ~>            Epi  3.417168e-02  0.0074431841      
8                int_dis   ~>            Epi  2.287155e-02  0.0105422718      
9             medication   ~>            Epi  7.364844e-03  0.0028147411      
10        contraceptives   ~>            Epi -1.577718e-02 -0.0072722355      
11              cigday_1   ~>            Epi  2.200542e-02  0.0054554452      
12                    V8   ~>            Epi  6.028764e-02  0.0041033295      
13      f         Matsmk   ~>          group  2.362105e-01  0.0259998623      
14      g         Matagg   ~>          group  1.498314e+00  0.1124475911      
15      h       FamScore   ~>          group  1.245177e-01  0.0112582385      
16      i         EduPar   ~>          group -3.311137e+00 -0.1909128197      
17      j       n_trauma   ~>          group  2.365251e+00  0.1332336696      
18                   Age   ~>          group -2.930048e+00 -0.1587319632      
19               int_dis   ~>          group  1.254491e+00  0.1438147828      
20            medication   ~>          group  1.153762e+00  0.1096701472      
21        contraceptives   ~>          group  1.622942e-01  0.0186053939      
22              cigday_1   ~>          group  1.036875e+01  0.6393286187      
23                    V8   ~>          group  1.318719e+01  0.2232327002      
24      z            Epi   ~>          group  1.393481e+00  0.3465760225      
26                   Epi  <->            Epi  1.000000e+00  0.9990675738      
27                 group  <->          group -9.417905e-01 -0.0582027933      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives

Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan
WARNING: some estimated ov variances are negative
############################
############################
Epi_M2 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 108 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         23
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                                      
  Test statistic                               243.503
  Degrees of freedom                                 3
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.009    0.042    0.217    0.829
    Matagg     (b)   -0.017    0.064   -0.261    0.794
    FamScore   (c)   -0.054    0.063   -0.853    0.393
    EduPar     (d)   -0.010    0.092   -0.109    0.913
    n_trauma   (e)    0.018    0.096    0.188    0.851
    Age              -0.042    0.101   -0.416    0.677
    int_dis          -0.010    0.038   -0.255    0.799
    medication        0.018    0.039    0.453    0.651
    contrcptvs        0.074    0.053    1.390    0.165
    cigday_1         -0.058    0.091   -0.641    0.522
    V8               -0.522    0.239   -2.187    0.029
  group ~                                             
    Matsmk     (f)    0.308    1.180    0.261    0.794
    Matagg     (g)    1.435    2.525    0.568    0.570
    FamScore   (h)   -0.234    2.134   -0.110    0.913
    EduPar     (i)   -3.495    2.306   -1.516    0.130
    n_trauma   (j)    2.505    1.539    1.627    0.104
    Age              -3.123    2.581   -1.210    0.226
    int_dis           1.231    0.850    1.449    0.147
    medication        1.267    0.895    1.415    0.157
    contrcptvs        0.566    0.854    0.663    0.508
    cigday_1         10.065    7.223    1.393    0.163
    V8               10.274   16.951    0.606    0.544
    Epi        (z)   -5.741    0.009 -669.813    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125                           

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               1.000                           
   .group           -31.957                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.308    1.180    0.261    0.794
    directMatagg      1.435    2.525    0.568    0.570
    directFamScore   -0.234    2.134   -0.110    0.913
    directEduPar     -3.495    2.306   -1.516    0.130
    directn_trauma    2.505    1.539    1.627    0.104
    EpiMatsmk        -0.052    0.239   -0.217    0.829
    EpiMatagg         0.095    0.365    0.261    0.794
    EpiFamScore       0.308    0.361    0.853    0.393
    EpiEduPar         0.058    0.526    0.109    0.913
    Epin_trauma      -0.104    0.554   -0.188    0.851
    total             0.823    4.371    0.188    0.851

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi  9.021717e-03  0.0039897063      
3       b         Matagg   ~>            Epi -1.656139e-02 -0.0049937195      
4       c       FamScore   ~>            Epi -5.363066e-02 -0.0194819461      
5       d         EduPar   ~>            Epi -1.003054e-02 -0.0023236029      
6       e       n_trauma   ~>            Epi  1.817152e-02  0.0041125181      
7                    Age   ~>            Epi -4.183870e-02 -0.0091064217      
8                int_dis   ~>            Epi -9.609870e-03 -0.0044262219      
9             medication   ~>            Epi  1.786833e-02  0.0068239536      
10        contraceptives   ~>            Epi  7.415666e-02  0.0341559075      
11              cigday_1   ~>            Epi -5.823695e-02 -0.0144270114      
12                    V8   ~>            Epi -5.220008e-01 -0.0355023001      
13      f         Matsmk   ~>          group  3.080500e-01  0.0339073236      
14      g         Matagg   ~>          group  1.434825e+00  0.1076829255      
15      h       FamScore   ~>          group -2.342742e-01 -0.0211818619      
16      i         EduPar   ~>          group -3.494814e+00 -0.2015033912      
17      j       n_trauma   ~>          group  2.504516e+00  0.1410785378      
18                   Age   ~>          group -3.122626e+00 -0.1691648440      
19               int_dis   ~>          group  1.231194e+00  0.1411440750      
20            medication   ~>          group  1.266603e+00  0.1203963286      
21        contraceptives   ~>          group  5.660290e-01  0.0648895675      
22              cigday_1   ~>          group  1.006508e+01  0.6206054463      
23                    V8   ~>          group  1.027449e+01  0.1739266838      
24      z            Epi   ~>          group -5.740817e+00 -1.4288749907      
26                   Epi  <->            Epi  1.000000e+00  0.9975833547      
27                 group  <->          group -3.195698e+01 -1.9749494619      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives

Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan
WARNING: some estimated ov variances are negative
############################
############################
Epi_M15 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 107 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         23
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                                      
  Test statistic                                72.096
  Degrees of freedom                                 3
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)   -0.055    0.057   -0.964    0.335
    Matagg     (b)    0.074    0.106    0.695    0.487
    FamScore   (c)    0.113    0.082    1.378    0.168
    EduPar     (d)    0.229    0.104    2.213    0.027
    n_trauma   (e)   -0.062    0.089   -0.701    0.483
    Age              -0.088    0.121   -0.727    0.467
    int_dis          -0.065    0.047   -1.378    0.168
    medication       -0.024    0.056   -0.433    0.665
    contrcptvs        0.032    0.055    0.579    0.562
    cigday_1         -0.052    0.113   -0.458    0.647
    V8                0.007    0.271    0.026    0.979
  group ~                                             
    Matsmk     (f)    0.193    1.158    0.167    0.867
    Matagg     (g)    1.614    2.501    0.645    0.519
    FamScore   (h)    0.202    2.105    0.096    0.923
    EduPar     (i)   -3.176    2.248   -1.413    0.158
    n_trauma   (j)    2.329    1.439    1.618    0.106
    Age              -2.983    2.519   -1.184    0.236
    int_dis           1.212    0.824    1.472    0.141
    medication        1.137    0.868    1.309    0.191
    contrcptvs        0.177    0.800    0.221    0.825
    cigday_1         10.340    7.205    1.435    0.151
    V8               13.279   16.898    0.786    0.432
    Epi        (z)   -1.141    0.027  -41.523    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125                           

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               1.000                           
   .group            -0.302                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.193    1.158    0.167    0.867
    directMatagg      1.614    2.501    0.645    0.519
    directFamScore    0.202    2.105    0.096    0.923
    directEduPar     -3.176    2.248   -1.413    0.158
    directn_trauma    2.329    1.439    1.618    0.106
    EpiMatsmk         0.063    0.065    0.963    0.335
    EpiMatagg        -0.084    0.121   -0.695    0.487
    EpiFamScore      -0.129    0.093   -1.377    0.169
    EpiEduPar        -0.261    0.118   -2.210    0.027
    Epin_trauma       0.071    0.101    0.701    0.483
    total             0.823    4.371    0.188    0.851

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi -5.522110e-02 -0.0243855820      
3       b         Matagg   ~>            Epi  7.387035e-02  0.0222419975      
4       c       FamScore   ~>            Epi  1.127425e-01  0.0408962143      
5       d         EduPar   ~>            Epi  2.291129e-01  0.0529985053      
6       e       n_trauma   ~>            Epi -6.219036e-02 -0.0140545193      
7                    Age   ~>            Epi -8.796430e-02 -0.0191184353      
8                int_dis   ~>            Epi -6.492649e-02 -0.0298616580      
9             medication   ~>            Epi -2.404003e-02 -0.0091677648      
10        contraceptives   ~>            Epi  3.188491e-02  0.0146648385      
11              cigday_1   ~>            Epi -5.184015e-02 -0.0128239070      
12                    V8   ~>            Epi  7.148733e-03  0.0004855016      
13      f         Matsmk   ~>          group  1.932465e-01  0.0212707831      
14      g         Matagg   ~>          group  1.614209e+00  0.1211455206      
15      h       FamScore   ~>          group  2.022610e-01  0.0182873829      
16      i         EduPar   ~>          group -3.175795e+00 -0.1831093095      
17      j       n_trauma   ~>          group  2.329237e+00  0.1312050331      
18                   Age   ~>          group -2.982804e+00 -0.1615899741      
19               int_dis   ~>          group  1.212276e+00  0.1389752499      
20            medication   ~>          group  1.136593e+00  0.1080381857      
21        contraceptives   ~>          group  1.766922e-01  0.0202559824      
22              cigday_1   ~>          group  1.034025e+01  0.6375719679      
23                    V8   ~>          group  1.327938e+01  0.2247932544      
24      z            Epi   ~>          group -1.141079e+00 -0.2844197401      
26                   Epi  <->            Epi  1.000000e+00  0.9947223019      
27                 group  <->          group -3.020622e-01 -0.0186674925      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
Warning in lav_data_full(data = data, group = group, cluster = cluster, :
lavaan WARNING: exogenous variable(s) declared as ordered in data: Matsmk Matagg
int_dis medication contraceptives
Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
lavaan WARNING: correlation between variables group and Epi is (nearly) 1.0
Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
variances are negative
############################
############################
Epi_M_all 
############################
############################
##Mediation Model ##
lavaan 0.6-7 ended normally after 112 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         23
                                                      
                                                  Used       Total
  Number of observations                            80          99
                                                                  
Model Test User Model:
                                                      
  Test statistic                                19.419
  Degrees of freedom                                 3
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  Epi ~                                               
    Matsmk     (a)    0.025    0.082    0.301    0.764
    Matagg     (b)    0.132    0.124    1.068    0.285
    FamScore   (c)   -0.102    0.109   -0.934    0.350
    EduPar     (d)   -0.281    0.169   -1.658    0.097
    n_trauma   (e)    0.074    0.126    0.589    0.556
    Age               0.122    0.179    0.679    0.497
    int_dis           0.085    0.074    1.148    0.251
    medication        0.050    0.080    0.623    0.533
    contrcptvs       -0.074    0.084   -0.872    0.383
    cigday_1          0.168    0.140    1.205    0.228
    V8                0.285    1.060    0.268    0.788
  group ~                                             
    Matsmk     (f)    0.095    1.273    0.075    0.940
    Matagg     (g)    0.666    2.626    0.254    0.800
    FamScore   (h)    0.738    2.220    0.333    0.739
    EduPar     (i)   -1.600    2.503   -0.639    0.523
    n_trauma   (j)    1.913    1.657    1.155    0.248
    Age              -3.678    2.775   -1.325    0.185
    int_dis           0.728    0.955    0.763    0.446
    medication        0.837    1.013    0.826    0.409
    contrcptvs        0.622    0.970    0.641    0.521
    cigday_1          9.298    7.262    1.280    0.200
    V8               11.409   18.263    0.625    0.532
    Epi        (z)    6.542    0.104   63.023    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               0.000                           
   .group             0.000                           

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)
    group|t1         10.125                           

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .Epi               1.000                           
   .group           -41.801                           

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)
    group             1.000                           

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    directMatsmk      0.095    1.273    0.075    0.940
    directMatagg      0.666    2.626    0.254    0.800
    directFamScore    0.738    2.220    0.333    0.739
    directEduPar     -1.600    2.503   -0.639    0.523
    directn_trauma    1.913    1.657    1.155    0.248
    EpiMatsmk         0.161    0.535    0.301    0.764
    EpiMatagg         0.864    0.809    1.068    0.286
    EpiFamScore      -0.665    0.712   -0.934    0.350
    EpiEduPar        -1.837    1.108   -1.657    0.097
    Epin_trauma       0.487    0.827    0.589    0.556
    total             0.823    4.371    0.188    0.851

    label            lhs edge            rhs           est           std group
1                         int            Epi  0.000000e+00  0.0000000000      
2       a         Matsmk   ~>            Epi  2.458188e-02  0.0108076417      
3       b         Matagg   ~>            Epi  1.320289e-01  0.0395785961      
4       c       FamScore   ~>            Epi -1.016065e-01 -0.0366948417      
5       d         EduPar   ~>            Epi -2.807573e-01 -0.0646596116      
6       e       n_trauma   ~>            Epi  7.445977e-02  0.0167533797      
7                    Age   ~>            Epi  1.216017e-01  0.0263131775      
8                int_dis   ~>            Epi  8.529333e-02  0.0390566463      
9             medication   ~>            Epi  5.004593e-02  0.0190013736      
10        contraceptives   ~>            Epi -7.362493e-02 -0.0337135711      
11              cigday_1   ~>            Epi  1.683723e-01  0.0414679492      
12                    V8   ~>            Epi  2.846099e-01  0.0192441826      
13      f         Matsmk   ~>          group  9.543635e-02  0.0105047474      
14      g         Matagg   ~>          group  6.661429e-01  0.0499936421      
15      h       FamScore   ~>          group  7.383498e-01  0.0667577133      
16      i         EduPar   ~>          group -1.600452e+00 -0.0922785011      
17      j       n_trauma   ~>          group  1.913070e+00  0.1077624513      
18                   Age   ~>          group -3.677979e+00 -0.1992502669      
19               int_dis   ~>          group  7.283543e-01  0.0834984647      
20            medication   ~>          group  8.366138e-01  0.0795238067      
21        contraceptives   ~>          group  6.219800e-01  0.0713037233      
22              cigday_1   ~>          group  9.297883e+00  0.5733000161      
23                    V8   ~>          group  1.140922e+01  0.1931351063      
24      z            Epi   ~>          group  6.542238e+00  1.6378805576      
26                   Epi  <->            Epi  1.000000e+00  0.9860014692      
27                 group  <->          group -4.180088e+01 -2.5832993986      
28                Matsmk  <->         Matsmk  1.960443e-01  1.0000000000      
29                Matsmk  <->         Matagg  4.936709e-02  0.3693241433      
30                Matsmk  <->       FamScore -9.177215e-03 -0.0569887592      
31                Matsmk  <->         EduPar -5.564346e-03 -0.0541843459      
32                Matsmk  <->       n_trauma  7.459313e-03  0.0743497863      
33                Matsmk  <->            Age -3.217300e-03 -0.0333441329      
34                Matsmk  <->        int_dis  2.151899e-02  0.1053910232      
35                Matsmk  <->     medication  4.113924e-03  0.0242997446      
36                Matsmk  <-> contraceptives  2.151899e-02  0.1053910232      
37                Matsmk  <->       cigday_1  1.693829e-02  0.1542372547      
38                Matsmk  <->             V8  2.928139e-03  0.0971189320      
39                Matagg  <->         Matagg  9.113924e-02  1.0000000000      
40                Matagg  <->       FamScore  3.417722e-02  0.3112715087      
41                Matagg  <->         EduPar -1.656118e-02 -0.2365241196      
42                Matagg  <->       n_trauma  7.233273e-03  0.1057402114      
43                Matagg  <->            Age  3.118694e-04  0.0047405101      
44                Matagg  <->        int_dis  3.291139e-02  0.2364027144      
45                Matagg  <->     medication  7.594937e-03  0.0657951695      
46                Matagg  <-> contraceptives  7.594937e-03  0.0545544726      
47                Matagg  <->       cigday_1  1.018987e-02  0.1360858260      
48                Matagg  <->             V8  8.272067e-04  0.0402393217      
49              FamScore  <->       FamScore  1.322785e-01  1.0000000000      
50              FamScore  <->         EduPar -2.948312e-02 -0.3495149022      
51              FamScore  <->       n_trauma  2.667269e-02  0.3236534989      
52              FamScore  <->            Age  3.636947e-03  0.0458878230      
53              FamScore  <->        int_dis  6.455696e-02  0.3849084009      
54              FamScore  <->     medication  4.430380e-03  0.0318580293      
55              FamScore  <-> contraceptives  5.822785e-02  0.3471722832      
56              FamScore  <->       cigday_1  4.381329e-02  0.4856887960      
57              FamScore  <->             V8  7.814844e-04  0.0315547719      
58                EduPar  <->         EduPar  5.379307e-02  1.0000000000      
59                EduPar  <->       n_trauma -8.024412e-03 -0.1526891136      
60                EduPar  <->            Age  2.762108e-03  0.0546490350      
61                EduPar  <->        int_dis -1.909283e-02 -0.1785114035      
62                EduPar  <->     medication  1.017932e-02  0.1147832062      
63                EduPar  <-> contraceptives -1.329114e-02 -0.1242676068      
64                EduPar  <->       cigday_1 -1.493803e-02 -0.2596730517      
65                EduPar  <->             V8 -8.860887e-06 -0.0005610523      
66              n_trauma  <->       n_trauma  5.134332e-02  1.0000000000      
67              n_trauma  <->            Age  1.582278e-03  0.0320439451      
68              n_trauma  <->        int_dis  4.159132e-02  0.3980335009      
69              n_trauma  <->     medication  1.763110e-02  0.2034979577      
70              n_trauma  <-> contraceptives  1.808318e-02  0.1730580439      
71              n_trauma  <->       cigday_1  2.128165e-02  0.3786692420      
72              n_trauma  <->             V8 -4.694340e-04 -0.0304243917      
73                   Age  <->            Age  4.748866e-02  1.0000000000      
74                   Age  <->        int_dis  8.090259e-03  0.0805056484      
75                   Age  <->     medication -1.655660e-03 -0.0198700345      
76                   Age  <-> contraceptives  3.524124e-02  0.3506833348      
77                   Age  <->       cigday_1  8.542355e-03  0.1580445206      
78                   Age  <->             V8 -1.333633e-03 -0.0898732659      
79               int_dis  <->        int_dis  2.126582e-01  1.0000000000      
80               int_dis  <->     medication  6.075949e-02  0.3445843938      
81               int_dis  <-> contraceptives  6.075949e-02  0.2857142857      
82               int_dis  <->       cigday_1  4.449367e-02  0.3890038953      
83               int_dis  <->             V8  5.645344e-03  0.1797788722      
84            medication  <->     medication  1.462025e-01  1.0000000000      
85            medication  <-> contraceptives  3.544304e-02  0.2010075631      
86            medication  <->       cigday_1  3.275316e-03  0.0345360471      
87            medication  <->             V8  2.084232e-03  0.0800493604      
88        contraceptives  <-> contraceptives  2.126582e-01  1.0000000000      
89        contraceptives  <->       cigday_1  4.892405e-02  0.4277382803      
90        contraceptives  <->             V8  2.688833e-03  0.0856272484      
91              cigday_1  <->       cigday_1  6.151859e-02  1.0000000000      
92              cigday_1  <->             V8  1.509276e-03  0.0893623867      
93                    V8  <->             V8  4.636832e-03  1.0000000000      
94                 group  <->          group  1.000000e+00  1.0000000000      
95                        int          group  0.000000e+00  0.0000000000      
96                        int         Matsmk  1.262500e+00  2.8513745747      
97                        int         Matagg  1.100000e+00  3.6436779343      
98                        int       FamScore  2.250000e-01  0.6186398880      
99                        int         EduPar  6.062500e-01  2.6138976225      
100                       int       n_trauma  1.964286e-01  0.8668873691      
101                       int            Age  5.621377e-01  2.5795724974      
102                       int        int_dis  1.300000e+00  2.8190466136      
103                       int     medication  1.175000e+00  3.0729848569      
104                       int contraceptives  1.300000e+00  2.8190466136      
105                       int       cigday_1  1.243750e-01  0.5014526157      
106                       int             V8  5.286908e-01  7.7640983340      
    fixed par
1    TRUE   0
2   FALSE   1
3   FALSE   2
4   FALSE   3
5   FALSE   4
6   FALSE   5
7   FALSE   6
8   FALSE   7
9   FALSE   8
10  FALSE   9
11  FALSE  10
12  FALSE  11
13  FALSE  12
14  FALSE  13
15  FALSE  14
16  FALSE  15
17  FALSE  16
18  FALSE  17
19  FALSE  18
20  FALSE  19
21  FALSE  20
22  FALSE  21
23  FALSE  22
24  FALSE  23
26   TRUE   0
27   TRUE   0
28   TRUE   0
29   TRUE   0
30   TRUE   0
31   TRUE   0
32   TRUE   0
33   TRUE   0
34   TRUE   0
35   TRUE   0
36   TRUE   0
37   TRUE   0
38   TRUE   0
39   TRUE   0
40   TRUE   0
41   TRUE   0
42   TRUE   0
43   TRUE   0
44   TRUE   0
45   TRUE   0
46   TRUE   0
47   TRUE   0
48   TRUE   0
49   TRUE   0
50   TRUE   0
51   TRUE   0
52   TRUE   0
53   TRUE   0
54   TRUE   0
55   TRUE   0
56   TRUE   0
57   TRUE   0
58   TRUE   0
59   TRUE   0
60   TRUE   0
61   TRUE   0
62   TRUE   0
63   TRUE   0
64   TRUE   0
65   TRUE   0
66   TRUE   0
67   TRUE   0
68   TRUE   0
69   TRUE   0
70   TRUE   0
71   TRUE   0
72   TRUE   0
73   TRUE   0
74   TRUE   0
75   TRUE   0
76   TRUE   0
77   TRUE   0
78   TRUE   0
79   TRUE   0
80   TRUE   0
81   TRUE   0
82   TRUE   0
83   TRUE   0
84   TRUE   0
85   TRUE   0
86   TRUE   0
87   TRUE   0
88   TRUE   0
89   TRUE   0
90   TRUE   0
91   TRUE   0
92   TRUE   0
93   TRUE   0
94   TRUE   0
95   TRUE   0
96   TRUE   0
97   TRUE   0
98   TRUE   0
99   TRUE   0
100  TRUE   0
101  TRUE   0
102  TRUE   0
103  TRUE   0
104  TRUE   0
105  TRUE   0
106  TRUE   0
rmd_paths <-paste0(tempfile(c(names(Netlist))),".Rmd")
names(rmd_paths) <- names(Netlist)

for (n in names(rmd_paths)) {
    sink(file = rmd_paths[n])
    cat("  \n",
        "```{r, echo = FALSE}",
            "Netlist[[n]]",
        "```",
        sep = "  \n")
    sink()
}

Interactive SEM plots

Only direct effects with a significant standardized effect of p<0.05 are shown.

    for (n in names(rmd_paths)) {
        cat(knitr::knit_child(rmd_paths[[n]],
                              quiet= TRUE))
        file.remove(rmd_paths[[n]])
    }

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

Random number generation:
 RNG:     Mersenne-Twister 
 Normal:  Inversion 
 Sample:  Rounding 
 
locale:
[1] LC_COLLATE=German_Germany.1252  LC_CTYPE=German_Germany.1252   
[3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C                   
[5] LC_TIME=German_Germany.1252    

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] plyr_1.8.6                  scales_1.1.1               
 [3] RCircos_1.2.1               compareGroups_4.4.6        
 [5] readxl_1.3.1                RRHO_1.28.0                
 [7] webshot_0.5.2               visNetwork_2.0.9           
 [9] org.Hs.eg.db_3.12.0         AnnotationDbi_1.52.0       
[11] xlsx_0.6.5                  gprofiler2_0.2.0           
[13] BiocParallel_1.24.1         kableExtra_1.3.1           
[15] glmpca_0.2.0                knitr_1.30                 
[17] DESeq2_1.30.0               SummarizedExperiment_1.20.0
[19] Biobase_2.50.0              MatrixGenerics_1.2.0       
[21] matrixStats_0.57.0          GenomicRanges_1.42.0       
[23] GenomeInfoDb_1.26.2         IRanges_2.24.1             
[25] S4Vectors_0.28.1            BiocGenerics_0.36.0        
[27] forcats_0.5.0               stringr_1.4.0              
[29] dplyr_1.0.2                 purrr_0.3.4                
[31] readr_1.4.0                 tidyr_1.1.2                
[33] tibble_3.0.4                tidyverse_1.3.0            
[35] semPlot_1.1.2               lavaan_0.6-7               
[37] viridis_0.5.1               viridisLite_0.3.0          
[39] WGCNA_1.69                  fastcluster_1.1.25         
[41] dynamicTreeCut_1.63-1       ggplot2_3.3.3              
[43] gplots_3.1.1                corrplot_0.84              
[45] RColorBrewer_1.1-2          workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] coda_0.19-4            bit64_4.0.5            DelayedArray_0.16.0   
  [4] data.table_1.13.6      rpart_4.1-15           RCurl_1.98-1.2        
  [7] doParallel_1.0.16      generics_0.1.0         preprocessCore_1.52.1 
 [10] callr_3.5.1            lambda.r_1.2.4         RSQLite_2.2.2         
 [13] mice_3.12.0            chron_2.3-56           bit_4.0.4             
 [16] xml2_1.3.2             lubridate_1.7.9.2      httpuv_1.5.5          
 [19] assertthat_0.2.1       d3Network_0.5.2.1      xfun_0.20             
 [22] hms_1.0.0              rJava_0.9-13           evaluate_0.14         
 [25] promises_1.1.1         fansi_0.4.1            caTools_1.18.1        
 [28] dbplyr_2.0.0           igraph_1.2.6           DBI_1.1.1             
 [31] geneplotter_1.68.0     tmvnsim_1.0-2          Rsolnp_1.16           
 [34] htmlwidgets_1.5.3      futile.logger_1.4.3    ellipsis_0.3.1        
 [37] crosstalk_1.1.1        backports_1.2.0        pbivnorm_0.6.0        
 [40] annotate_1.68.0        vctrs_0.3.6            abind_1.4-5           
 [43] cachem_1.0.1           withr_2.4.1            HardyWeinberg_1.7.1   
 [46] checkmate_2.0.0        fdrtool_1.2.16         mnormt_2.0.2          
 [49] cluster_2.1.0          mi_1.0                 lazyeval_0.2.2        
 [52] crayon_1.3.4           genefilter_1.72.0      pkgconfig_2.0.3       
 [55] nlme_3.1-151           nnet_7.3-15            rlang_0.4.10          
 [58] lifecycle_0.2.0        kutils_1.70            modelr_0.1.8          
 [61] VennDiagram_1.6.20     cellranger_1.1.0       rprojroot_2.0.2       
 [64] flextable_0.6.2        Matrix_1.2-18          regsem_1.6.2          
 [67] carData_3.0-4          boot_1.3-26            reprex_1.0.0          
 [70] base64enc_0.1-3        processx_3.4.5         whisker_0.4           
 [73] png_0.1-7              rjson_0.2.20           bitops_1.0-6          
 [76] KernSmooth_2.23-18     blob_1.2.1             arm_1.11-2            
 [79] jpeg_0.1-8.1           rockchalk_1.8.144      memoise_2.0.0         
 [82] magrittr_2.0.1         zlibbioc_1.36.0        compiler_4.0.3        
 [85] lme4_1.1-26            cli_2.2.0              XVector_0.30.0        
 [88] pbapply_1.4-3          ps_1.5.0               htmlTable_2.1.0       
 [91] formatR_1.7            Formula_1.2-4          MASS_7.3-53           
 [94] tidyselect_1.1.0       stringi_1.5.3          lisrelToR_0.1.4       
 [97] sem_3.1-11             yaml_2.2.1             OpenMx_2.18.1         
[100] locfit_1.5-9.4         latticeExtra_0.6-29    tools_4.0.3           
[103] matrixcalc_1.0-3       rstudioapi_0.13        uuid_0.1-4            
[106] foreach_1.5.1          foreign_0.8-81         git2r_0.28.0          
[109] gridExtra_2.3          farver_2.0.3           BDgraph_2.63          
[112] digest_0.6.27          shiny_1.6.0            Rcpp_1.0.5            
[115] broom_0.7.3            later_1.1.0.1          writexl_1.3.1         
[118] gdtools_0.2.3          httr_1.4.2             psych_2.0.12          
[121] colorspace_2.0-0       rvest_0.3.6            XML_3.99-0.5          
[124] fs_1.5.0               truncnorm_1.0-8        splines_4.0.3         
[127] statmod_1.4.35         xlsxjars_0.6.1         systemfonts_0.3.2     
[130] plotly_4.9.3           xtable_1.8-4           jsonlite_1.7.2        
[133] nloptr_1.2.2.2         futile.options_1.0.1   corpcor_1.6.9         
[136] glasso_1.11            R6_2.5.0               Hmisc_4.4-2           
[139] mime_0.9               pillar_1.4.7           htmltools_0.5.1.1     
[142] glue_1.4.2             fastmap_1.1.0          minqa_1.2.4           
[145] codetools_0.2-18       lattice_0.20-41        huge_1.3.4.1          
[148] gtools_3.8.2           officer_0.3.16         zip_2.1.1             
[151] GO.db_3.12.1           openxlsx_4.2.3         survival_3.2-7        
[154] rmarkdown_2.6          qgraph_1.6.5           munsell_0.5.0         
[157] GenomeInfoDbData_1.2.4 iterators_1.0.13       impute_1.64.0         
[160] haven_2.3.1            reshape2_1.4.4         gtable_0.3.0